首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5526篇
  免费   422篇
  国内免费   1018篇
  2024年   22篇
  2023年   103篇
  2022年   126篇
  2021年   163篇
  2020年   211篇
  2019年   196篇
  2018年   211篇
  2017年   202篇
  2016年   226篇
  2015年   227篇
  2014年   317篇
  2013年   507篇
  2012年   221篇
  2011年   295篇
  2010年   251篇
  2009年   317篇
  2008年   295篇
  2007年   306篇
  2006年   315篇
  2005年   244篇
  2004年   230篇
  2003年   225篇
  2002年   176篇
  2001年   168篇
  2000年   122篇
  1999年   126篇
  1998年   96篇
  1997年   91篇
  1996年   96篇
  1995年   85篇
  1994年   72篇
  1993年   85篇
  1992年   55篇
  1991年   92篇
  1990年   45篇
  1989年   46篇
  1988年   37篇
  1987年   36篇
  1986年   39篇
  1985年   34篇
  1984年   47篇
  1983年   34篇
  1982年   34篇
  1981年   29篇
  1980年   20篇
  1979年   18篇
  1978年   18篇
  1977年   14篇
  1976年   11篇
  1973年   7篇
排序方式: 共有6966条查询结果,搜索用时 453 毫秒
991.
Devising analysis tools for elucidating the regulatory mechanism of complex enzymes has been a challenging task for many decades. It generally requires the determination of the structural‐dynamical information of protein solvent systems far from equilibrium over multiple length and time scales, which is still difficult both theoretically and experimentally. To cope with the problem, we introduce a full‐residue space multiscale simulation method based on a combination of the kinetic Monte Carlo and molecular dynamics techniques, in which the rates of the rate‐determining processes are evaluated from a biomolecular forcefield on the fly during the simulation run by taking into account the full space of residues. To demonstrate its reliability and efficiency, we explore the light‐induced functional behavior of the full‐length phototropin1 from Chlamydomonas reinhardtii (Cr‐phot1) and its various subdomains. Our results demonstrate that in the dark state the light oxygen voltage‐2‐Jα (LOV2‐Jα) photoswitch inhibits the enzymatic activity of the kinase, whereas the LOV1‐Jα photoswitch controls the dimerization with the LOV2 domain. This leads to the repulsion of the LOV1‐LOV2 linker out of the interface region between both LOV domains, which results in a positively charged surface suitable for cell–membrane interaction. By contrast, in the light state, we observe that the distance between both LOV domains is increased and the LOV1‐LOV2 linker forms a helix–turn–helix (HTH) motif, which enables gene control through nucleotide binding. Finally, we find that the kinase is activated through the disruption of the Jα‐helix from the LOV2 domain, which is followed by a stretching of the activation loop (A‐loop) and broadening of the catalytic cleft of the kinase. Proteins 2014; 82:2018–2040. © 2014 Wiley Periodicals, Inc.  相似文献   
992.
This paper presents the results of research on the influence of two fractions of humic substances (HS): fulvic acids (FA) and humic acids (HA), as a function of concentration, on the liposome membranes formed from egg yolk lecithin (EYL). The concentration of HS in relation to EYL changed from 0% to 10% by weight. The influence of HS on various areas of membranes: interphase water-lipid, in the lipid layer just below the polar part of the membrane and in the middle of the lipid bilayer, was investigated by different spin labels (TEMPO, DOXYL 5, DOXYL 16). The study showed that HA slightly decreased the fluidity of the analyzed membranes on the surface layer, while FA significantly liquidated the center of the lipid bilayer. The strong effect of both fractions of HS on the concentration of free radicals as a function of time was also described.  相似文献   
993.

Background

Owing to recent discoveries of many hydrogen sulfide-mediated physiological processes, sulfide biology is in the focus of scientific research. However, the promiscuous chemical properties of sulfide pose complications for biological studies, which led to accumulation of controversial observations in the literature.

Scope of review

We intend to provide an overview of fundamental thermodynamic and kinetic features of sulfide redox- and coordination-chemical reactions and protonation equilibria in relation to its biological functions. In light of these chemical properties we review the strengths and limitations of the most commonly used sulfide detection methods and recently developed fluorescent probes. We also give a personal perspective on blood and tissue sulfide measurements based on proposed biomolecule–sulfide interactions and point out important chemical aspects of handling sulfide reagent solutions.

Major conclusions

The diverse chemistries of sulfide detection methods resulted in orders of magnitude differences in measured physiological sulfide levels. Investigations that were aimed to dissect the underlying molecular reasons responsible for these controversies made the important recognition that there are large sulfide reserves in biological systems. These sulfide pools are tightly regulated in a dynamic manner and they are likely to play a major role in regulation of endogenous-sulfide-mediated biological functions and avoiding toxic side effects.

General significance

Working with sulfide is challenging, because it requires considerable amounts of chemical knowledge to adequately handle reagent sulfide solutions and interpret biological observations. Therefore, we propose that a rigorous chemical approach could aid the reconciliation of the increasing number of controversies in sulfide biology. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   
994.
Laser-induced hyperthermia treatment of tumor in a 2-D axisymmetric tissue embedded with moderate size (100–150 µm) blood vessels is studied. Laser absorption is enhanced by embedding gold–silica nanoshells in the tumor. Heat transfer in the tissue is modeled using Weinbaum–Jiji bioheat transfer equation. With laser irradiation, the volumetric radiation is accounted in the governing bioheat equation. Radiative information needed in the bioheat equation is calculated using the discrete ordinate method, and the coupled bioheat-radiation equation is solved using the finite volume method. Effects of power density, laser exposure time, beam radius, diameter of blood vessel and volume fractions of nanoshells on temperature spread in the tissue are analyzed.  相似文献   
995.
996.
997.
998.
通过对两种miRNA提取方法——一步法和多步法进行比较研究,以期获得较高质量的蒙古黄芪不同器官的miRNA。实验结果表明,两种方法均可用于蒙古黄芪miRNA提取,二者存在着不同的优缺点,多步法提取成功率较高但步骤繁琐,相比之下一步法实验条件要求严苛但步骤简单、快捷省时,提取的蒙古黄芪miRNA完整性好,可以满足荧光定量PCR等进一步实验需要。  相似文献   
999.
Many groups of animals defend shared resources with coordinated signals. The best-studied of these signals are the vocal duets produced by mated pairs of birds. Duets are believed to be more common among tropical-breeding species, but a comprehensive test of this hypothesis is lacking, and the mechanisms that generate latitudinal patterns in duetting are not known. We used a stratified sample of 372 songbird species to conduct the first broad-scale, phylogenetically explicit analysis of duet evolution. We found that duetting evolves in association with the absence of migration, but not with sexual monochromatism or tropical breeding. We conclude that the evolution of migration exerts a major influence on the evolution of duetting. The perceived association between tropical breeding and duetting may be a by-product of the migration–duetting relationship. Migration reduces the average duration of partnerships, potentially reducing the benefits of cooperative behaviour, including duetting. Ultimately, the evolution of coordinated resource-defence signals in songbirds may be driven by ecological conditions that favour sedentary lifestyles and social stability.  相似文献   
1000.
Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family—MurC, MurD, MurE and MurF—are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park’s nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC–MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC–MurF enzymes in biochemical inhibition assays and molecules 1014 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC–MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号