首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1232篇
  免费   34篇
  国内免费   10篇
  2024年   1篇
  2023年   12篇
  2022年   12篇
  2021年   23篇
  2020年   13篇
  2019年   22篇
  2018年   27篇
  2017年   17篇
  2016年   18篇
  2015年   41篇
  2014年   112篇
  2013年   98篇
  2012年   128篇
  2011年   113篇
  2010年   112篇
  2009年   65篇
  2008年   63篇
  2007年   66篇
  2006年   45篇
  2005年   37篇
  2004年   23篇
  2003年   25篇
  2002年   26篇
  2001年   9篇
  2000年   16篇
  1999年   28篇
  1998年   18篇
  1997年   33篇
  1996年   17篇
  1995年   11篇
  1994年   6篇
  1993年   7篇
  1992年   6篇
  1991年   6篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1276条查询结果,搜索用时 15 毫秒
991.
Amyloid light chain (AL) amyloidosis is a protein misfolding disease where immunoglobulin light chains sample partially folded states that lead to misfolding and amyloid formation, resulting in organ dysfunction and death. In vivo, amyloid deposits are found in the extracellular space and involve a variety of accessory molecules, such as glycosaminoglycans, one of the main components of the extracellular matrix. Glycosaminoglycans are a group of negatively charged heteropolysaccharides composed of repeating disaccharide units. In this study, we investigated the effect of glycosaminoglycans on the kinetics of amyloid fibril formation of three AL cardiac amyloidosis light chains. These proteins have similar thermodynamic stability but exhibit different kinetics of fibril formation. We also studied single restorative and reciprocal mutants and wild type germ line control protein. We found that the type of glycosaminoglycan has a different effect on the kinetics of fibril formation, and this effect seems to be associated with the natural propensity of each AL protein to form fibrils. Heparan sulfate accelerated AL-12, AL-09, κI Y87H, and AL-103 H92D fibril formation; delayed fibril formation for AL-103; and did not promote any fibril formation for AL-12 R65S, AL-103 delP95aIns, or κI O18/O8. Chondroitin sulfate A, on the other hand, showed a strong fibril formation inhibition for all proteins. We propose that heparan sulfate facilitates the formation of transient amyloidogenic conformations of AL light chains, thereby promoting amyloid formation, whereas chondroitin sulfate A kinetically traps partially unfolded intermediates, and further fibril elongation into fibrils is inhibited, resulting in formation/accumulation of oligomeric/protofibrillar aggregates.  相似文献   
992.
Sarkar N  Kumar M  Dubey VK 《Biochimie》2011,93(5):962-968
Tissue deposition of fibrillar protein aggregates called amyloid is the root cause of several degenerative diseases. Thus identification of compounds which can prevent or reduce protein aggregation can serve as a potential therapeutic target. In the present study we have shown inhibitory effect of sodium tetrathionate toward Hen egg white lysozyme (HEWL) amyloidogenesis at pH 2.0. Our study reveals that without sulfonation, sodium tetrathionate prevents amyloid fibril progression. Moreover, it shows that formation of disulfide bonds rather than exposure of hydrophobic surface in protein plays a critical role in initiating fibrillation process. Inhibitory effect of reducing agent β-mercaptoethanol toward fibrillation process also confirms the involvement of disulfide bond in initiating HEWL amyloidogenesis. These results provide important information toward understanding key interactions that guide amyloidogenesis, which may facilitate development of potential therapeutics.  相似文献   
993.
In protein conformational disorders ranging from Alzheimer to Parkinson disease, proteins of unrelated sequence misfold into a similar array of aggregated conformers ranging from small oligomers to large amyloid fibrils. Substantial evidence suggests that small, prefibrillar oligomers are the most toxic species, yet to what extent they can be selectively targeted and remodeled into non-toxic conformers using small molecules is poorly understood. We have evaluated the conformational specificity and remodeling pathways of a diverse panel of aromatic small molecules against mature soluble oligomers of the Aβ42 peptide associated with Alzheimer disease. We find that small molecule antagonists can be grouped into three classes, which we herein define as Class I, II, and III molecules, based on the distinct pathways they utilize to remodel soluble oligomers into multiple conformers with reduced toxicity. Class I molecules remodel soluble oligomers into large, off-pathway aggregates that are non-toxic. Moreover, Class IA molecules also remodel amyloid fibrils into the same off-pathway structures, whereas Class IB molecules fail to remodel fibrils but accelerate aggregation of freshly disaggregated Aβ. In contrast, a Class II molecule converts soluble Aβ oligomers into fibrils, but is inactive against disaggregated and fibrillar Aβ. Class III molecules disassemble soluble oligomers (as well as fibrils) into low molecular weight species that are non-toxic. Strikingly, Aβ non-toxic oligomers (which are morphologically indistinguishable from toxic soluble oligomers) are significantly more resistant to being remodeled than Aβ soluble oligomers or amyloid fibrils. Our findings reveal that relatively subtle differences in small molecule structure encipher surprisingly large differences in the pathways they employ to remodel Aβ soluble oligomers and related aggregated conformers.  相似文献   
994.
The formation of amyloid-like fibrils is characteristic of various diseases, but the underlying mechanism and the factors that determine whether, when, and how proteins form amyloid, remain uncertain. Certain mechanisms have been proposed based on the three-dimensional or runaway domain swapping, inspired by the fact that some proteins show an apparent correlation between the ability to form domain-swapped dimers and a tendency to form fibrillar aggregates. Intramolecular β-sheet contacts present in the monomeric state could constitute intermolecular β-sheets in the dimeric and fibrillar states. One example is an amyloid-forming mutant of the immunoglobulin binding domain B1 of streptococcal protein G, which in its native conformation consists of a four-stranded β-sheet and one α-helix. Under native conditions this mutant adopts a domain-swapped dimer, and it also forms amyloid-like fibrils, seemingly in correlation to its domain-swapping ability. We employ magic angle spinning solid-state NMR and other methods to examine key structural features of these fibrils. Our results reveal a highly rigid fibril structure that lacks mobile domains and indicate a parallel in-register β-sheet structure and a general loss of native conformation within the mature fibrils. This observation contrasts with predictions that native structure, and in particular intermolecular β-strand interactions seen in the dimeric state, may be preserved in "domain-swapping" fibrils. We discuss these observations in light of recent work on related amyloid-forming proteins that have been argued to follow similar mechanisms and how this may have implications for the role of domain-swapping propensities for amyloid formation.  相似文献   
995.
The interaction of brain lipids with α-synuclein may play an important role in the pathogenesis of Parkinson disease (PD). Docosahexaenoic acid (DHA) is an abundant fatty acid of neuronal membranes, and it is presents at high levels in brain areas with α-synuclein inclusions of patients with PD. In animal models, an increase of DHA content in the brain induces α-synuclein oligomer formation in vivo. However, it is not clear whether these oligomeric species are the precursors of the larger aggregates found in Lewy bodies of post-mortem PD brains. To characterize these species and to define the role of fatty acids in amyloid formation, we investigated the aggregation process of α-synuclein in the presence of DHA. We found that DHA readily promotes α-synuclein aggregation and that the morphology of these aggregates is dependent on the ratio between the protein and DHA. In the presence of a molar ratio protein/DHA of 1:10, amyloid-like fibrils are formed. These fibrils are morphologically different from those formed by α-synuclein alone and have a less packed structure. At a protein/DHA molar ratio of 1:50, we observe the formation of stable oligomers. Moreover, chemical modifications, methionine oxidations, and protein-lipid adduct formations are induced by increasing concentrations of DHA. The extent of these modifications defines the structure and the stability of aggregates. We also show that α-synuclein oligomers are more toxic if generated in the presence of DHA in dopaminergic neuronal cell lines, suggesting that these species might be important in the neurodegenerative process associated with PD.  相似文献   
996.
Prodomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24-204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nM and high specificity toward ADAM9. In SY5Y neuroblastoma cells overexpressing amyloid precursor protein, proA9 treatment reduces the amount of endogenous ADAM10 enzyme in the medium while increasing membrane-bound ADAM10, as shown both by Western and activity assays with selective fluorescent peptide substrates using proteolytic activity matrix analysis. An increase in membrane-bound ADAM10 generates higher levels of soluble amyloid precursor protein α in the medium, whereas soluble amyloid precursor protein β levels are decreased, demonstrating that inhibition of ADAM9 increases α-secretase activity on the cell membrane. Quantification of physiological ADAM10 substrates by a proteomic approach revealed that substrates, such as epidermal growth factor (EGF), HER2, osteoactivin, and CD40-ligand, are increased in the medium of BT474 breast tumor cells that were incubated with proA9, demonstrating that the regulation of ADAM10 by ADAM9 applies for many ADAM10 substrates. Taken together, our results demonstrate that ADAM10 activity is regulated by inhibition of ADAM9, and this regulation may be used to control shedding of amyloid precursor protein by enhancing α-secretase activity, a key regulatory step in the etiology of Alzheimer disease.  相似文献   
997.
The amyloid precursor protein (APP) is one of the major proteins involved in Alzheimer disease (AD). Proteolytic cleavage of APP gives rise to amyloid-β (Aβ) peptides that aggregate and deposit extensively in the brain of AD patients. Although the increase in levels of aberrantly folded Aβ peptide is considered to be important to disease pathogenesis, the regulation of APP processing and Aβ metabolism is not fully understood. Recently, the British precursor protein (BRI2, ITM2B) has been implicated in influencing APP processing in cells and Aβ deposition in vivo. Here, we show that the wild type BRI2 protein reduces plaque load in an AD mouse model, similar to its disease-associated mutant form, ADan precursor protein (ADanPP), and analyze in more detail the mechanism of how BRI2 and ADanPP influence APP processing and Aβ metabolism. We find that overexpression of either BRI2 or ADanPP reduces extracellular Aβ by increasing levels of secreted insulin-degrading enzyme (IDE), a major Aβ-degrading protease. This effect is also observed with BRI2 lacking its C-terminal 23-amino acid peptide sequence. Our results suggest that BRI2 might act as a receptor protein that regulates IDE levels that in turn influences APP metabolism in a previously unrecognized way. Targeting the regulation of IDE may be a promising therapeutic approach to sporadic AD.  相似文献   
998.
Synthetic peptide immunogens that mimic the conformation of a target epitope of pathological relevance offer the possibility to precisely control the immune response specificity. Here, we performed conformational analyses using a panel of peptides in order to investigate the key parameters controlling their conformation upon integration into liposomal bilayers. These revealed that the peptide lipidation pattern, the lipid anchor chain length, and the liposome surface charge all significantly alter peptide conformation. Peptide aggregation could also be modulated post-liposome assembly by the addition of distinct small molecule β-sheet breakers. Immunization of both mice and monkeys with a model liposomal vaccine containing β-sheet aggregated lipopeptide (Palm1-15) induced polyclonal IgG antibodies that specifically recognized β-sheet multimers over monomer or non-pathological native protein. The rational design of liposome-bound peptide immunogens with defined conformation opens up the possibility to generate vaccines against a range of protein misfolding diseases, such as Alzheimer disease.  相似文献   
999.
The prion protein (PrP) is best known for its association with prion diseases. However, a controversial new role for PrP in Alzheimer disease (AD) has recently emerged. In vitro studies and mouse models of AD suggest that PrP may be involved in AD pathogenesis through a highly specific interaction with amyloid-β (Aβ42) oligomers. Immobilized recombinant human PrP (huPrP) also exhibited high affinity and specificity for Aβ42 oligomers. Here we report the novel finding that aggregated forms of huPrP and Aβ42 are co-purified from AD brain extracts. Moreover, an anti-PrP antibody and an agent that specifically binds to insoluble PrP (iPrP) co-precipitate insoluble Aβ from human AD brain. Finally, using peptide membrane arrays of 99 13-mer peptides that span the entire sequence of mature huPrP, two distinct types of Aβ binding sites on huPrP are identified in vitro. One specifically binds to Aβ42 and the other binds to both Aβ42 and Aβ40. Notably, Aβ42-specific binding sites are localized predominantly in the octapeptide repeat region, whereas sites that bind both Aβ40 and Aβ42 are mainly in the extreme N-terminal or C-terminal domains of PrP. Our study suggests that iPrP is the major PrP species that interacts with insoluble Aβ42 in vivo. Although this work indicated the interaction of Aβ42 with huPrP in the AD brain, the pathophysiological relevance of the iPrP/Aβ42 interaction remains to be established.  相似文献   
1000.
Annular protofibrils (APFs) represent a new and distinct class of amyloid structures formed by disease-associated proteins. In vitro, these pore-like structures have been implicated in membrane permeabilization and ion homeostasis via pore formation. Still, evidence for their formation and relevance in vivo is lacking. Herein, we report that APFs are in a distinct pathway from fibril formation in vitro and in vivo. In human Alzheimer disease brain samples, amyloid-β APFs were associated with diffuse plaques, but not compact plaques; moreover, we show the formation of intracellular APFs. Our results together with previous studies suggest that the prevention of amyloid-β annular protofibril formation could be a relevant target for the prevention of amyloid-β toxicity in Alzheimer disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号