首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1232篇
  免费   34篇
  国内免费   10篇
  1276篇
  2024年   1篇
  2023年   12篇
  2022年   12篇
  2021年   23篇
  2020年   13篇
  2019年   22篇
  2018年   27篇
  2017年   17篇
  2016年   18篇
  2015年   41篇
  2014年   112篇
  2013年   98篇
  2012年   128篇
  2011年   113篇
  2010年   112篇
  2009年   65篇
  2008年   63篇
  2007年   66篇
  2006年   45篇
  2005年   37篇
  2004年   23篇
  2003年   25篇
  2002年   26篇
  2001年   9篇
  2000年   16篇
  1999年   28篇
  1998年   18篇
  1997年   33篇
  1996年   17篇
  1995年   11篇
  1994年   6篇
  1993年   7篇
  1992年   6篇
  1991年   6篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1276条查询结果,搜索用时 0 毫秒
41.
The purpose of our study is to understand the protective role of miR-455-3p against abnormal amyloid precursor protein (APP) processing, amyloid beta (Aβ) formation, defective mitochondrial biogenesis/dynamics and synaptic damage in AD progression. In-silico analysis of miR-455-3p has identified the APP gene as a putative target. Using mutant APP cells, miR-455-3p construct, biochemical and molecular assays, immunofluorescence and transmission electron microscopy (TEM) analyses, we studied the protective effects of miR-455-3p on – 1) APP regulation, amyloid beta (Aβ)(1–40) & (1–42) levels, mitochondrial biogenesis & dynamics; 3) synaptic activities and 4) cell viability & apoptosis. Our luciferase reporter assay confirmed the binding of miR-455-3p at the 3’UTR of APP gene. Immunoblot, sandwich ELISA and immunostaining analyses revealed that the reduced levels of the mutant APP, Aβ(1–40) & Aβ(1–42), and C99 by miR-455-3p. We also found the reduced levels of mRNA and proteins of mitochondrial biogenesis (PGC1α, NRF1, NRF2, and TFAM) and synaptic genes (synaptophysin and PSD95) in mutant APP cells; on the other hand, mutant APP cells that express miR-455-3p showed increased mRNA and protein levels of biogenesis and synaptic genes. Additionally, expression of mitochondrial fission proteins (DRP1 and FIS1) were decreased while the fusion proteins (OPA1, Mfn1 and Mfn2) were increased by miR-455-3p. Our TEM analysis showed a decrease in mitochondria number and an increase in the size of mitochondrial length in mutant APP cells transfected with miR-455-3p. Based on these observations, we cautiously conclude that miR-455-3p regulate APP processing and protective against mutant APP-induced mitochondrial and synaptic abnormalities in AD.  相似文献   
42.
Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.  相似文献   
43.
江洪  张朝晖 《广西植物》2007,27(4):610-615
利用原子吸收光谱仪对晴隆老万场红土型金矿三种苔藓植物体及其土壤中Au、Ca、Mg、Cu、Pb、Tl、Zn、Hg八种金属元素进行测定,并对植物体与元素之间的相关性及植物对金属的富集能力进行分析。结果表明:在该金矿区生长的苔藓体内金属元素普遍比较高,其体内金属元素含量的顺序与土壤中的金属元素的顺序基本一致。不同物种植物体对金属元素的吸收、富集却有较大的差异。Mg-Hg在0.01水平上达到极显著正相关,Au-Zn、Tl-Cu在0.05水平上达到显著正相关。皱叶毛口藓和芽孢银藓对Au具有较强的富集能力,因此,它们在该地区对红土型金矿具有一定的指示作用。  相似文献   
44.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed specific protein kinase C (PKC) substrate and has been implicated in membrane trafficking, cell motility, secretion, cell cycle, and transformation. We found that amyloid beta protein (A beta) (25-35) and A beta (1-40) phosphorylate MARCKS in primary cultured rat microglia. Treatment of microglia with A beta (25-35) at 10 nM or 12-O-tetradecanoylphorbol 13-acetate (1.6 nM) led to phosphorylation of MARCKS, an event inhibited by PKC inhibitors, staurosporine, calphostin C, and chelerythrine. The A beta (25-35)-induced phosphorylation of MARCKS was inhibited by pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A, but not with pertussis toxin. PKC isoforms alpha, delta, and epsilon were identified in microglia by immunocytochemistry and western blots using isoform-specific antibodies. PKC-delta was tyrosine-phosphorylated by the treatment of microglia for 10 min with A beta (25-35) at 10 nM. Other PKC isoforms alpha and epsilon were tyrosine-phosphorylated by A beta (25-35), but only to a small extent. We propose that a tyrosine kinase-activated PKC pathway is involved in the A beta (25-35)-induced phosphorylation of MARCKS in rat microglia.  相似文献   
45.
Metalloprotease MP100 was originally isolated as a beta-secretase candidate from human brain using a beta-amyloid precursor protein (beta-APP)-derived p-nitroanilide (pNA) peptide substrate. Peptide sequences from purified MP100 were now found to resemble sequences reported for a puromycin-sensitive aminopeptidase (PSA) highly enriched in brain, and cDNA cloning revealed nearly complete homology of MP100 to PSA, with only a single bp difference resulting in an amino acid change at position 184. Another MP100 cDNA encoded a protein with a 36-amino acid deletion (positions 180-217) and a two-amino acid insertion after Val533. Purified recombinant human MP100 cleaved the original pNA substrate as well as a free beta-site-spanning amyloid beta (A beta) peptide (A beta(-10/+10)), generating A beta(1-10). The latter substrate, however, remained uncleaved, if N- and C-terminally blocked, and also purified beta-APP was not cleaved. Double immunoimaging revealed partial, patchy, colocalization of beta-APP and MP100 in doubly transfected human embryonic kidney cells (HEK cells) and in normal neuroblastoma cells, and both proteins could be coimmunoprecipitated from rat brain extracts, suggesting their close vicinity in vivo. Coexpression of MP100 and beta-APP695, however, did not boost A beta levels in HEK cells, although active enzyme was produced. Thus, MP100 does not exert true beta-secretase-like function in cells, although it may well act as a secondary exoprotease in a complex beta-APP/A beta metabolism.  相似文献   
46.
One of the hallmarks of Alzheimer's disease is the accumulation of senile plaques in brain, extracellular lesions comprised mostly of aggregates of the amyloid beta-peptide (Abeta). Abeta is proteolytically derived from the Alzheimer's amyloid precursor protein (APP). The generation of Abeta and nonamyloidogenic derivatives of APP involves utilization of alternative processing pathways and multiple subcellular compartments. To improve our understanding of the regulation of APP processing, we investigated the effects of wortmannin, a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, on APP processing. PI3-kinases form a multifaceted family of enzymes that represent converging points for multiple signal transduction pathways and also act as key regulators of vesicular trafficking. In N2a neuroblastoma cells expressing either wild-type APP or the "Swedish" familial Alzheimer's disease-associated mutant variant of APP, wortmannin treatment resulted in decreased release of both Abeta and soluble APPalpha. In parallel, full-length APP and both processed derivatives accumulated inside the cells. These effects were not present at nanomolar concentrations of wortmannin, but only at micromolar concentrations, implying the possible involvement of a recently described trans-Golgi network (TGN)-associated PI3-kinase that is resistant to nanomolar concentrations of the inhibitor, but sensitive to micromolar concentrations. All effects were reversible when the drug was removed from the cell culture medium. Given the suspected site of action of this novel PI3-kinase activity at the TGN, it is tempting to speculate that the unexpected increase in the levels of both intracellular soluble APPalpha and intracellular Abeta might be due to wortmannin-induced covesiculation of APP together with its respective secretase enzymes within the TGN, leading to the execution of alpha-, beta-, and gamma-secretase reactions.  相似文献   
47.
Amyloid -peptide (A), the main constituent of senile plaques in Alzheimer's disease (AD) brain, is hypothesized to be a key factor in the neurodegeneration seen in AD. Recently it has been shown by us and others that the neurotoxicity of A occurs in conjunction with free radical oxidative stress associated with the peptide. A(1–40) and several other fragments of the A sequence are associated with free radicals in solution that are detectable using electron paramagnetic resonance spectroscopy. These free radicals were shown to attack brain cell membranes, initiate lipid peroxidation, increase Ca2+ influx and damage membrane and cytosolic proteins. In AD brain obtained under rapid autopsy protocol, the activity of the oxidatively-sensitive enzyme creatine kinase was shown to be significantly reduced. We reasoned that A-associated free radical-induced modification of creatine kinase activity and other markers of cellular damage might be modulated by free radical scavengers. Accordingly, this study demonstrates that vitamin E can modulate A(25–35)-induced oxidative damage to creatine kinase and cellular proteins in cultured embryonic hippocampal neurons. These results, consistent with the hypothesis of free radical-mediated A toxicity in AD, are discussed with deference to potential free radical scavengers as therapeutic agents for slowing the progression of AD.  相似文献   
48.
sAPPalpha, the soluble form of the beta-amyloid precursor protein, has been shown to act as a potent epidermal growth factor by stimulating keratinocyte proliferation and migration. In this report we provide evidence for a cytoprotective role of sAPPalpha. As a model we used HaCaT cells and normal human keratinocytes (NHK) cultured in the absence of fetal calf serum and bovine pituitary extract. Under these conditions keratinocytes began to undergo apoptosis at increasing rates after 96 h of culture. Surprisingly, keratinocytes were protected from apoptosis by the addition of 50 nM recombinant sAPPalpha. Subsequent experiments were performed to elucidate the regulatory basis of the cytoprotective role of sAPPalpha. We found that recombinant sAPPalpha facilitated the substrate adhesion of keratinocytes in the first 30 minutes after seeding. The basis for this adhesion-promoting function was shown by the ability of recombinant sAPPalpha to continuously coat the culture dish thereby promoting the ability to bind keratinocytes. A second mechanism explaining the cytoprotective role was found in the significant inhibition of apoptosis by recombinant sAPPalpha. In HaCaT cells moderate UV-B irradiation was sufficient to induce apoptosis. In contrast, induction of apoptosis in NHK required additionally the depletion of endogenous sAPPalpha suggesting that sAPPalpha mediates protection against UV-B irradiation. Staurosporine-induced apoptosis rates were significantly reduced by about 59% after addition of recombinant sAPPalpha. These results show that sAPPalpha exerts a pronounced cytoprotective effect and that this effect is mediated by facilitated cell adhesion and by the antiapoptotic function of sAPPalpha.  相似文献   
49.
Protein refolding/misfolding to an alternative form plays an aetiologic role in many diseases in humans, including Alzheimer's disease, the systemic amyloidoses, and the prion diseases. Here we have discovered that such refolding can occur readily for a simple lattice model of proteins in a propagatable manner without designing for any particular alternative native state. The model uses a simple contact energy function for interactions between residues and does not consider the peculiarities of polypeptide geometry. In this model, under conditions where the normal (N) native state is marginally stable or unstable, two chains refold from the N native state to an alternative multimeric energetic minimum comprising a single refolded conformation that can then propagate itself to other protein chains. The only requirement for efficient propagation is that a two-faced mode of packing must be in the ground state as a dimer (a higher-energy state for this packing leads to less efficient propagation). For random sequences, these ground-state dimeric configurations tend to have more beta-sheet-like extended structure than almost any other sort of dimeric ground-state assembly. This implies that propagating states (such as for prions) are beta-sheet rich because the only likely propagating forms are beta-sheet rich. We examine the details of our simulations to see to what extent the observed properties of prion propagation can be predicted by a simple protein folding model. The formation of the alternative state in the present model shows several distinct features of amyloidogenesis and of prion propagation. For example, an analog of the phenomenon of conformationally distinct strains in prions is observed. We find a parallel between 'glassy' behavior in liquids and the formation of a propagatable state in proteins. This is the first report of simulation of conformational propagation using any heteropolymer model. The results imply that some (but not most) small protein sequences must maintain a sequence signal that resists refolding to propagatable alternative native states and that the ability to form such states is not limited to polypeptides (or reliant on regular hydrogen bonding per se) but can occur for other protein-like heteropolymers.  相似文献   
50.
Kiuchi Y  Isobe Y  Fukushima K  Kimura M 《Life sciences》2002,70(20):2421-2431
Amyloid beta-protein (A3) fibril in senile plaque may be related to the pathogenesis of Alzheimer's disease (AD). Basement membrane (BM) components are associated with the plaques in AD brain. It suggests that the BM components may play an important role in the deposition of the plaque. We investigated the potential of BM components, such as type IV collagen (collagen IV) and entactin, to induce disassembly of preformed Abeta1-42 (Abeta42) fibrils in direct comparison to laminin. Thioflavin T assays revealed that these BM components disrupted preformed Abeta42 fibrils in a dose-dependent manner. The high concentration of BM components, 100 microg/mL laminin, 50 microg/mL collagen IV and 50 microg/mL entactin, had most effect on disassembly of preformed Abeta42 fibrils (Molar ratio; Abeta42:laminin = 90:1, Abeta42:collagen IV = 34:1, Abeta42:entactin = 20:1). Circular dichroism spectroscopy data indicated that the high concentration of BM components induced structural transition in Abeta42 from beta-sheet to random structures. These results suggest that collagen IV and entactin, as well as laminin, are effective inducers of disassembly of Abeta42 fibrils. The ability of these BM components to induce random structures may be linked to the disassembly of preformed Abeta42 fibrils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号