首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   885篇
  免费   102篇
  国内免费   30篇
  1017篇
  2024年   8篇
  2023年   33篇
  2022年   27篇
  2021年   36篇
  2020年   35篇
  2019年   46篇
  2018年   39篇
  2017年   45篇
  2016年   43篇
  2015年   43篇
  2014年   55篇
  2013年   63篇
  2012年   24篇
  2011年   51篇
  2010年   29篇
  2009年   50篇
  2008年   54篇
  2007年   58篇
  2006年   39篇
  2005年   41篇
  2004年   31篇
  2003年   23篇
  2002年   21篇
  2001年   19篇
  2000年   14篇
  1999年   11篇
  1998年   5篇
  1997年   13篇
  1996年   5篇
  1995年   11篇
  1994年   6篇
  1993年   11篇
  1992年   10篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
81.
S4 movement in a mammalian HCN channel   总被引:6,自引:0,他引:6  
Hyperpolarization-activated, cyclic nucleotide-gated ion channels (HCN) mediate an inward cation current that contributes to spontaneous rhythmic firing activity in the heart and the brain. HCN channels share sequence homology with depolarization-activated Kv channels, including six transmembrane domains and a positively charged S4 segment. S4 has been shown to function as the voltage sensor and to undergo a voltage-dependent movement in the Shaker K+ channel (a Kv channel) and in the spHCN channel (an HCN channel from sea urchin). However, it is still unknown whether S4 undergoes a similar movement in mammalian HCN channels. In this study, we used cysteine accessibility to determine whether there is voltage-dependent S4 movement in a mammalian HCN1 channel. Six cysteine mutations (R247C, T249C, I251C, S253C, L254C, and S261C) were used to assess S4 movement of the heterologously expressed HCN1 channel in Xenopus oocytes. We found a state-dependent accessibility for four S4 residues: T249C and S253C from the extracellular solution, and L254C and S261C from the internal solution. We conclude that S4 moves in a voltage-dependent manner in HCN1 channels, similar to its movement in the spHCN channel. This S4 movement suggests that the role of S4 as a voltage sensor is conserved in HCN channels. In addition, to determine the reason for the different cAMP modulation and the different voltage range of activation in spHCN channels compared with HCN1 channels, we constructed a COOH-terminal-deleted spHCN. This channel appeared to be similar to a COOH-terminal-deleted HCN1 channel, suggesting that the main functional differences between spHCN and HCN1 channels are due to differences in their COOH termini or in the interaction between the COOH terminus and the rest of the channel protein in spHCN channels compared with HCN1 channels.  相似文献   
82.
In various occupations, workers may be exposed to extreme environmental conditions and physical activities. Under these conditions the ability to follow the workers' body temperature may protect them from overheating that may lead to heat related injuries. The "Dräger" Double Sensor (DS) is a novel device for assessing body-core temperature (Tc). The purpose of this study was to evaluate the accuracy of the DS in measuring Tc under heat stress. Seventeen male participants performed a three stage protocol: 30 min rest in a thermal comfort environment (20–22 °C, 50% relative humidity), followed by an exposure to a hot environment of 40 °C, 40% relative humidity −30 min at rest and 60 min of exercise (walking on a treadmill at 5 km/h and 2% elevation). Simultaneously temperatures measured by the DS (TDS) and by rectal temperature (Tre) (YSI-401 thermistor) were recorded and then compared. During the three stages of the study the average temperature obtained by the DS was within±0.3 °C of rectal measurement. The correlation between TDS and Tre was significantly better during the heat exposures phases than during resting under comfort conditions. These preliminary results are promising for potential use of the DS by workers under field conditions and especially under environmental heat stress or when dressed in protective garments. For this goal, further investigations are required to validate the accuracy of the DS under various levels of heat stress, clothing and working levels.  相似文献   
83.
An efficient monitoring and control strategy is the basis for a reliable production process. Conventional optical density (OD) measurements involve superpositions of light absorption and scattering, and the results are only given in arbitrary units. In contrast, photon density wave (PDW) spectroscopy is a dilution-free method that allows independent quantification of both effects with defined units. For the first time, PDW spectroscopy was evaluated as a novel optical process analytical technology tool for real-time monitoring of biomass formation in Escherichia coli high-cell-density fed-batch cultivations. Inline PDW measurements were compared to a commercially available inline turbidity probe and with offline measurements of OD and cell dry weight (CDW). An accurate correlation of the reduced PDW scattering coefficient µs′ with CDW was observed in the range of 5–69 g L−1 (R2 = 0.98). The growth rates calculated based on µs′ were comparable to the rates determined with all reference methods. Furthermore, quantification of the reduced PDW scattering coefficient µs′ as a function of the absorption coefficient µa allowed direct detection of unintended process trends caused by overfeeding and subsequent acetate accumulation. Inline PDW spectroscopy can contribute to more robust bioprocess monitoring and consequently improved process performance.  相似文献   
84.
It is shown that an inhibited enzyme electrode, using cytochrome oxidase, will respond to H2S, HCN and azide ion. For all three inhibitors the kinetics of the inhibition and recovery processes have been analysed using the theoretical model presented previously (Albery et al., 1990a). Rearrangement of the differential equation describing inhibition and the development of the necessary software has enabled us to obtain values of the concentration of inhibitor in a matter of seconds after exposure of the sensor. The sensor will measure concentrations of H2S down to 1 ppm in the gas phase and concentrations of HCN and azide ion down to 0·4 μmol dm−3 in the solution  相似文献   
85.
Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own and as enhancers for the endogenous agonists in both increasing agonist potency and providing additive efficacy—superagonism. The additive efficacy can also be observed with agonists, which are neutral or even negative modulators of the potency of the endogenous ligand. Based on the prevailing dimeric concept for 7TM receptors, it is proposed that the ago-allosteric modulators bind in the orthosteric binding site, but–importantly–in the “other” or allosteric protomer of the dimer. Hereby, they can act both as additive co-agonists, and through intermolecular cooperative effects between the protomers, they may influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric modulators can act through binding in the “other” protomer. It is suggested that for the in vivo, clinical setting a positive ago-allosteric modulator should be the preferred agonist drug.  相似文献   
86.
Herein, a boronic acid-based sensor was reported selectively to recognize Pd2+ ion. The fluorescence intensity increased 36-fold after sensor binding with 2.47 × 10−5 M of Pd2+ ion. It was carried out in the 99% aqueous solution for binding tests, indicating sensor having good water solubility. In addition, it is discernible that Pd2+ ion turned on the blue fluorescence of sensor under a UV–lamp (365 nm), while other ions (Ag+, Al3+, Ba2+, Ca2+, Cr2+, Cd2+, Co2+, Cs2+, Cu2+, Fe2+, Fe3+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+ and Zn2+) did not show the similar change. Furthermore, sensor has a low limit of detection (38 nM) and high selectivity, which exhibits the potential for the development of Pd2+ recognition in practical environments.  相似文献   
87.
An advanced electrochemical sensor for the detection of enrofloxacin (ENR) based on the use of a modified electrode containing cadmium sulfide (CdS) nanoparticles (NPs) is reported. The CdS NPs were synthesized and characterized and then coated onto the electrode to fabricate a modified electrode that exhibited a lower limit of detection of 9.5 × 10?8 mol·L?1. This detection limit compares with a traditional electrode that exhibited a concentration detection range of 1.0 × 10?2 to 1.0 × 10?7 mol·L?1. This modified electrode demonstrated good selectivity, reproducibility, response time (<40 s), lifetime (up to 12 wk), and pH range (3.3‐7.2) for the determination of ENR in real samples (eg, pig urine).  相似文献   
88.
Zeolitic imidazolate framework‐8 (ZIF‐8) loading rhodamine‐B (ZIF‐8@rhodamine‐B) nanocomposites was proposed and used as ratiometric fluorescent sensor to detect copper(II) ion (Cu2+). Scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray powder diffraction, nitrogen adsorption/desorption isotherms and fluorescence emission spectroscopy were employed to characterize the ZIF‐8@rhodamine‐B nanocomposites. The results showed the rhodamine‐B was successfully assembled on ZIF‐8 based on the π‐π interaction and the hydrogen bond between the nitrogen atom of ZIF‐8 and –COOH of rhodamine‐B. The as‐obtained ZIF‐8@rhodamine‐B nanocomposites were octahedron with size about 150–200 nm, had good water dispersion, and exhibited the characteristic fluorescence emission of ZIF‐8 at 335 nm and rhodamine‐B at 575 nm. The Cu2+ could quench fluorescence of ZIF‐8 rather than rhodamine‐B. The ZIF‐8 not only acted as the template to assemble rhodamine‐B, but also was employed as the signal fluorescence together with the fluorescence of rhodamine‐B as the reference to construct a novel ratiometric fluorescent sensor to detect Cu2+. The resulted ZIF‐8@rhodamine‐B nanocomposite fluorescence probe showed good linear range (68.4 nM to 125 μM) with a low detection limit (22.8 nM) for Cu2+ combined with good sensitivity and selectivity. The work also provides a better way to design ratiometric fluorescent sensors from ZIF‐8 and other fluorescent molecules.  相似文献   
89.
Monitoring of feeding and rumination behaviour can provide useful information for dairy herd management. The feeding behaviour of dairy cows can be recorded by different techniques, such as video cameras, weighing troughs or chewing sensors. Among feeding characteristics, individual feed intake of cows is of utmost interest, but as weighing troughs have high space and cost requirements they are used primarily in research studies. The objective of the present study was to evaluate whether records on feeding time or chewing activity or a combination of both contain enough information to estimate feed intake with sufficient accuracy. Feed intake and feeding time per cow were recorded by means of weighing troughs. Concurrently, chewing activity of seven cows was recorded by MSR-ART pressure sensors during five to eight measuring days per cow. Feeding and chewing behaviour were evaluated in time slots (1 min) and additionally assigned to feeding bouts for further analysis. The 1 min time slots were classified into feeding/no feeding or chewing/no chewing by the two systems, and agreement was found in 92.2% of the records. On average, cows spent 270±39 min/day at the feeding troughs and chewed 262±48 min/day. The average fresh matter intake (FMI) was 49.6±5.1 kg/day. Feed intake was divided into 9.7 bouts/day during which cows fed in average 27.8±21.7 min/bout and chewed 27.0±23.1 min/bout. The correlation between FMI and feeding time was r=0.891 and between FMI and chewing time r=0.780 overall cows. Hence, both systems delivered suitable information for estimating feed intake.  相似文献   
90.
Process analytical technology (PAT) is an initiative from the US FDA combining analytical and statistical tools to improve manufacturing operations and ensure regulatory compliance. This work describes the use of a continuous monitoring system for a protein refolding reaction to provide consistency in product quality and process performance across batches. A small‐scale bioreactor (3 L) is used to understand the impact of aeration for refolding recombinant human vascular endothelial growth factor (rhVEGF) in a reducing environment. A reverse‐phase HPLC assay is used to assess product quality. The goal in understanding the oxygen needs of the reaction and its impact to quality, is to make a product that is efficiently refolded to its native and active form with minimum oxidative degradation from batch to batch. Because this refolding process is heavily dependent on oxygen, the % dissolved oxygen (DO) profile is explored as a PAT tool to regulate process performance at commercial manufacturing scale. A dynamic gassing out approach using constant mass transfer (kLa) is used for scale‐up of the aeration parameters to manufacturing scale tanks (2,000 L, 15,000 L). The resulting DO profiles of the refolding reaction show similar trends across scales and these are analyzed using rpHPLC. The desired product quality attributes are then achieved through alternating air and nitrogen sparging triggered by changes in the monitored DO profile. This approach mitigates the impact of differences in equipment or feedstock components between runs, and is directly inline with the key goal of PAT to “actively manage process variability using a knowledge‐based approach.” Biotechnol. Bioeng. 2009; 104: 340–351 © 2009 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号