首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   886篇
  免费   101篇
  国内免费   30篇
  2024年   8篇
  2023年   33篇
  2022年   27篇
  2021年   36篇
  2020年   35篇
  2019年   46篇
  2018年   39篇
  2017年   45篇
  2016年   43篇
  2015年   43篇
  2014年   55篇
  2013年   63篇
  2012年   24篇
  2011年   51篇
  2010年   29篇
  2009年   50篇
  2008年   54篇
  2007年   58篇
  2006年   39篇
  2005年   41篇
  2004年   31篇
  2003年   23篇
  2002年   21篇
  2001年   19篇
  2000年   14篇
  1999年   11篇
  1998年   5篇
  1997年   13篇
  1996年   5篇
  1995年   11篇
  1994年   6篇
  1993年   11篇
  1992年   10篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
21.
Xanthomonas campestris pv. campestris (Xcc) controls virulence and plant infection mechanisms via the activity of the sensor kinase and response regulator pair HpaS/hypersensitive response and pathogenicity G (HrpG). Detailed analysis of the regulatory role of HpaS has suggested the occurrence of further regulators besides HrpG. Here we used in vitro and in vivo approaches to identify the orphan response regulator VemR as another partner of HpaS and to characterize relevant interactions between components of this signalling system. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacts with VemR. Phos-tag SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of VemR in vivo. Mutation analysis reveals that HpaS and VemR contribute to the regulation of motility and this relationship appears to be epistatic. Additionally, we show that VemR control of Xcc motility is due in part to its ability to interact and bind to the flagellum rotor protein FliM. Taken together, the findings describe the unrecognized regulatory role of sensor kinase HpaS and orphan response regulator VemR in the control of motility in Xcc and contribute to the understanding of the complex regulatory mechanisms used by Xcc during plant infection.  相似文献   
22.
A colorimetric sensor array based on natural pigments was developed to discriminate between various saccharides. Anthocyanins, pH‐sensitive natural pigments, were extracted from fruits and flowers and used as components of the sensor array. Variation in pH, due to the reaction between saccharides and boronic acids, caused obvious colour changes in the natural pigments. Only by observing the difference map with the naked eye could 11 common saccharides be divided into independent individuals. In conjunction with pattern recognition, the sensor array clearly differentiated between sugar and sugar alcohol with highly accuracy and allowed rapid quantification of different concentrations of maltitol and fructose. This sensor array for saccharides is expected to become a promising alternative tool for food monitoring. The link between anthocyanin and saccharide detection opened a new guiding direction for the application of anthocyanins in foods.  相似文献   
23.
Molecularly imprinted polymer‐modified glassy carbon electrode (GCE)‐based electrochemical sensor is prepared using the electropolymerization of aniline in the presence of melamine (MA) as a template. In this work, the advantages of molecularly imprinted conducting polymers (MICPs) and electroanalytical methods were combined to obtain an electronic device with better performances. The sensor performance was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) with the linear range of 0.6‐16 × 10?9M, quantification limit of 14.9 × 10?10M, and detection limit of 4.47 × 10?10M (S/N = 3). The selectivity of the sensor was tested in the presence of acetoguanamine (AGA), diaminomethylatrazine (DMT), casein, histidine, and glycine interfering molecules taken at the triple concentration with MA that demonstrated too small current response compared with that of the analyte indicating high specificity of the sensor towards the template. The sensor was successfully applied to determine MA in infant formula samples with significant recovery greater than 96% and relative standard deviation (RSD) less than 4.8%. Moreover, the good repeatability, recyclability, and stability make this sensor device promising for the real‐time monitoring of MA in different food stuffs.  相似文献   
24.
The rapid and sensitive determination of riboflavin (RF) is important for the treatment of seborrheic and glossitis dermatitis, sunlight sensitivity, mucosal, and skin disorders. In this work, an electrochemical sensor was developed by electrodes modification using poly (chitosan) to sensitive detection of RF in commercial multivitamin. Electrodeposition of chitosan on the surface of glass carbon electrode was performed using cyclic voltammetry technique in the range of ?1 to +1 V. The modified electrode surface morphology was characterized using a high‐resolution field emission scanning electron microscope. The modified electrode was used as an effective electrical interface for the detection of RF using cyclic, differential pulse, and square wave voltammetry techniques. Finally, the sensor was applied to determine RF in commercial multivitamins. In optimum conditions, the linear range for the standard sample of RF and commercial multivitamins 94 to 333μM and 24.6 to 176μM were obtained, respectively. Low limit of quantification (LLOQ) were obtained as 24.6μM.  相似文献   
25.
Protein concentration determination is a necessary in-process control for the downstream operations within biomanufacturing. As production transitions from batch mode to an integrated continuous bioprocess paradigm, there is a growing need to move protein concentration quantitation from off-line to in-line analysis. One solution to fulfill this process analytical technology need is an in-line index of refraction (IoR) sensor to measure protein concentration in real time. Here the performance of an IoR sensor is evaluated through a series of experiments to assess linear response, buffer matrix effects, dynamic range, sensor-to-sensor variability, and the limits of detection and quantitation. The performance of the sensor was also tested in two bioprocessing scenarios, ultrafiltration and capture chromatography. The implementation of this in-line IoR sensor for real-time protein concentration analysis and monitoring has the potential to improve continuous bioprocess manufacturing.  相似文献   
26.
In this study, we have analysed heel strike (HS) and toe off (TO) of normal individuals and hemiplegic patients, taking advantage of output curves acquired from various sensors, and verified the validity of sensor detection methods and their effectiveness when they were used for hemiplegic gaits. Gait phase detections using three different motion sensors were valid, since they all had reliabilities more than 95%, when compared with foot velocity algorithm. Results showed that the tilt sensor and the gyrosensor could detect gait phase more accurately in normal individuals. Vertical acceleration could detect HS most accurately in hemiplegic patient group A. The gyrosensor could detect HS and TO most accurately in hemiplegic patient groups A and B. The detection of TO from all sensor signals was valid in both the patient groups A and B. However, the vertical acceleration detected HS validly in patient group A and the gyrosensor detected HS validly in patient group B.  相似文献   
27.
Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own and as enhancers for the endogenous agonists in both increasing agonist potency and providing additive efficacy—superagonism. The additive efficacy can also be observed with agonists, which are neutral or even negative modulators of the potency of the endogenous ligand. Based on the prevailing dimeric concept for 7TM receptors, it is proposed that the ago-allosteric modulators bind in the orthosteric binding site, but–importantly–in the “other” or allosteric protomer of the dimer. Hereby, they can act both as additive co-agonists, and through intermolecular cooperative effects between the protomers, they may influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric modulators can act through binding in the “other” protomer. It is suggested that for the in vivo, clinical setting a positive ago-allosteric modulator should be the preferred agonist drug.  相似文献   
28.
29.
The effects of heating rate (HR) on the performance of two-phase (batch followed by fed-batch) high cell-density cultivations (HCDC) of E. coli DH5α for the production of plasmid DNA (pDNA) were investigated. Optimal temperatures for the HCDC, as selected from shake flask experiments at constant temperatures between 30 and 45 °C, were 35 °C for biomass accumulation in the batch phase and 42 °C for inducing pDNA replication during the fed-batch. In HCDC the temperature was increased at HR of 0.025, 0.05, 0.10 and 0.25 °C/min and the performance of the cultivations were compared to a HCDC run at constant temperature (35 °C). Compared to constant 35 °C, heat-induced HCDC accumulated up to 50% less biomass within the same cultivation time and acetate and glucose accumulated to high concentrations. The overall specific productivity (QP) and average pDNA yield (Yp/x) in HCDC at 35 °C were 0.22 ± 0.02 mg/g h and 5.3 ± 0.00 mg/g, respectively. Such parameters were maximum at a HR of 0.05 °C/min, reaching 0.56 ± 0.06 mg/g h and 9.3 ± 0.6 mg/g, respectively. At HR above 0.5 °C/min, Yp/x remained relatively constant, whereas QP tended to decrease. The supercoiled pDNA fraction remained around 80% at all HR. Bioreactors were equipped with a capacitance/conductivity probe. In all cases biomass concentration correlated closely with the capacitance signal and acetate and glucose accumulation was accompanied by an increase in the conductivity signal. Thus, it was possible to calculate acetate and biomass concentrations, as well as μ, from online capacitance and conductivity signals using estimators. Altogether, in this study it was shown that it is possible to maximize pDNA productivity by choosing an appropriate HR and that relevant parameters can be estimated by capacitance/conductivity signals, which are useful for better process control and development.  相似文献   
30.
Heterologous expression of sodium channel mutations in hypokalemic periodic paralysis reveals 2 variants on channel dysfunction. Charge-reducing mutations of voltage sensing S4 arginine residues alter channel gating as typically studied with expression in mammalian cells. These mutations also produce leak currents through the voltage sensor module, as typically studied with expression in Xenopus oocytes. DIIIS4 mutations at R3 in the skeletal muscle sodium channel produce gating defects and omega current consistent with the phenotype of reduced excitability. Here, we confirm DIIIS4 R3C gating defects in the oocyte expression system for fast inactivation and its recovery. We provide novel data for the effects of the cysteine mutation on voltage sensor movement, to further our understanding of sodium channel defects in hypokalemic periodic paralysis. Gating charge movement and its remobilization are selectively altered by the mutation at hyperpolarized membrane potential, as expected with reduced serum potassium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号