首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   5篇
  国内免费   1篇
  2023年   5篇
  2022年   5篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   12篇
  2013年   17篇
  2012年   4篇
  2011年   15篇
  2010年   18篇
  2009年   24篇
  2008年   18篇
  2007年   17篇
  2006年   14篇
  2005年   14篇
  2004年   9篇
  2003年   10篇
  2002年   9篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有262条查询结果,搜索用时 687 毫秒
211.
Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function.  相似文献   
212.
Adenine nucleotide translocases (ANTs) are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in cytosol. There are four ANT isoforms in humans (hANT1-4) and three in mice (mANT1, mANT2 and mANT4), all encoded by distinct genes. The aim of this study was to quantify expression of ANT isoform genes during the adipogenesis of mouse 3T3-L1 and human Simpson–Golabi–Behmel syndrome (SGBS)-derived preadipocytes. We also studied the effects of the adipogenesis regulators, insulin and rosiglitazone, on ANT isoform expression in differentiated adipocytes and examined the expression of ANT isoforms in subcutaneous and visceral white adipose tissue (WAT) from mice and humans. We found that adipogenesis was associated with an increase in the expression of ANT isoforms, specifically mANT2 in mouse 3T3-L1 cells and hANT3 in human SGBS cells. These changes could be involved in the increases in oxidative metabolism and decreases in lactate production observed during differentiation. Insulin and rosiglitazone induced mANT2 gene expression in mature 3T3-L1 cells and hANT2 and hANT3 gene expression in SGBS adipocytes. Furthermore, human WAT expressed greater amounts of hANT3 than hANT2, and the expression of both of these isoforms was greater in subcutaneous WAT than in visceral WAT. Finally, inhibition of ANT activity by atractyloside or bongkrekic acid impaired proper adipocyte differentiation. These results suggest that changes in the expression of ANT isoforms may be involved in adipogenesis in both human and mouse WAT.  相似文献   
213.
Mitochondrial impairment and calcium (Ca++) dyshomeostasis are associated with Parkinson's disease (PD). When intracellular ATP levels are lowered, Ca++-ATPase pumps are impaired causing cytoplasmic Ca++ to be elevated and calpain activation. Little is known about the effect of calpain activation on Parkin integrity. To address this gap, we examined the effects of mitochondrial inhibitors [oligomycin (Oligo), antimycin and rotenone] on endogenous Parkin integrity in rat midbrain and cerebral cortical cultures. All drugs induced calpain-cleavage of Parkin to ~36.9/43.6 kDa fragments. In contrast, treatment with the proinflammatory prostaglandin J2 (PGJ2) and the proteasome inhibitor epoxomicin induced caspase-cleavage of Parkin to fragments of a different size, previously shown by others to be triggered by apoptosis. Calpain-cleaved Parkin was enriched in neuronal mitochondrial fractions. Pre-treatment with the phosphatase inhibitor okadaic acid prior to Oligo-treatment, stabilized full-length Parkin phosphorylated at Ser65, and reduced calpain-cleavage of Parkin. Treatment with the Ca++ ionophore A23187, which facilitates Ca++ transport across the plasma membrane, mimicked the effect of Oligo by inducing calpain-cleavage of Parkin. Removing extracellular Ca++ from the media prevented oligomycin- and ionophore-induced calpain-cleavage of Parkin. Computational analysis predicted that calpain-cleavage of Parkin liberates its UbL domain. The phosphagen cyclocreatine moderately mitigated Parkin cleavage by calpain. Moreover, the pituitary adenylate cyclase activating peptide (PACAP27), which stimulates cAMP production, prevented caspase but not calpain-cleavage of Parkin. Overall, our data support a link between Parkin phosphorylation and its cleavage by calpain. This mechanism reflects the impact of mitochondrial impairment and Ca++-dyshomeostasis on Parkin integrity and could influence PD pathogenesis.  相似文献   
214.
Severe rheumatoid cachexia is associated with pronounced loss of muscle and fat mass in patients with advanced rheumatoid arthritis. This condition is associated with dyslipidemia and predisposition to cardiovascular diseases. Circulating levels of triglycerides (TG) and free fatty acids (FFA) have not yet been consistently defined in severe arthritis. Similarly, the metabolism of these lipids in the arthritic liver has not yet been clarified. Aiming at filling these gaps this study presents a characterization of the circulating lipid profile and of the fatty acids uptake and metabolism in perfused livers of rats with adjuvant-induced arthritis. The levels of TG and total cholesterol were reduced in both serum (10–20%) and liver (20–35%) of arthritic rats. The levels of circulating FFA were 40% higher in arthritic rats, possibly in consequence of cytokine-induced adipose tissue lipolysis. Hepatic uptake and oxidation of palmitic and oleic acids was higher in arthritic livers. The phenomenon results possibly from a more oxidized state of the arthritic liver. Indeed, NADPH/NADP+ and NADH/NAD+ ratios were 30% lower in arthritic livers, which additionally presented higher activities of the citric acid cycle driven by both endogenous and exogenous FFA. The lower levels of circulating and hepatic TG possibly are caused by an increased oxidation associated to a reduced synthesis of fatty acids in arthritic livers. These results reveal that the lipid hepatic metabolism in arthritic rats presents a strong catabolic tendency, a condition that should contribute to the marked cachexia described for arthritic rats and possibly for the severe rheumatoid arthritis.  相似文献   
215.
Cardiovascular disease (CVD) accounts for the largest number of deaths worldwide, necessitating the development of novel treatments and prevention strategies. Given the huge energy demands placed on the heart, it is not surprising that changes in energy metabolism play a key role in the development of cardiac dysfunction in CVD. A reduction in oxygen delivery to the heart, hypoxia, is sensed and responded to by the hypoxia-inducible factor (HIF) and its family of proteins, by regulating the oxygen-dependent signalling cascade and subsequent response. Hypoxia is one of the main drivers of metabolic change in ischaemic disease and myocardial infarction, and we therefore suggest that HIF may be an attractive therapeutic target. In this review, we assess cardiac energy metabolism in health and disease, and how these can be regulated by HIF-1α activation. We then present an overview of research in the field of hypoxia-mimetic drugs recently developed in other treatment fields, which provide insight into the potential of systemic HIF-1α activation therapy for treating the heart.  相似文献   
216.
Mitochondria contain approximately 1000 different proteins, which are located in four different compartments, outer membrane, inner membrane, intermembrane space and matrix. The vast majority of these proteins has to be imported from the cytosol. Therefore, sophisticated molecular machineries have evolved that mediate protein translocation across or insertion into mitochondrial membranes and subsequent assembly into multi-subunit complexes. While the initial entry of virtually all mitochondrial proteins is mediated by the general import pore of the outer membrane, at least four different downstream pathways are dedicated to import and assembly of proteins into a specific compartment.  相似文献   
217.
This study investigates the role of the cytoplasmic C terminus of fatty acid translocase (FAT/CD36) in localization of the molecule to the plasma membrane, its insertion into lipid rafts, and its ability to enhance long-chain fatty acid uptake in transfected H4IIE rat hepatoma cells. In these cells, wild-type FAT/CD36 is localized to both lipid raft and nonraft domains of the plasma membrane. Interestingly, a FAT/CD36 truncation mutant lacking the final 10 amino acids of the cytoplasmic C terminus was retained within the cell in detergent-resistant membranes, and unlike wild-type FAT/CD36, it did not enhance oleate uptake. Furthermore, expression of FAT/CD36 in these cells increased the incorporation of oleate into diacylglycerol, a property that was not shared by truncated FAT/CD36. To examine whether the C terminus itself has an intrinsic ability to dictate the plasma membrane localization of FAT/CD36, this region was fused in-frame to enhanced green fluorescent protein (EGFP). This domain was sufficient to attach EGFP to cellular membranes, suggesting an involvement in the intracellular traffic of the molecule. We conclude that the C terminus of FAT/CD36 is required for localization of the receptor to the cell surface and its ability to enhance cellular oleate uptake.  相似文献   
218.
Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.  相似文献   
219.
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.  相似文献   
220.
The protein-import apparatus of plant mitochondria   总被引:5,自引:0,他引:5  
The import and assembly of mitochondrial proteins synthesized in the cytosol is mediated by the protein-import apparatus which plays a central role in mitochondrial biogenesis. Ten years ago only some components of the protein-import apparatus from fungi and mammals were characterized, but today its major components have been analyzed at the molecular level also in plants. Interestingly there are specific features which distinguish the protein-import apparatus of plants from that of fungi and mammals. Here we give an overview of all known components of the protein-import apparatus from plants and focus on its differences in comparison to heterotrophic eukaryotes. Received: 29 March 1999 / Accepted: 14 May 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号