首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6409篇
  免费   600篇
  国内免费   873篇
  7882篇
  2023年   71篇
  2022年   87篇
  2021年   133篇
  2020年   140篇
  2019年   223篇
  2018年   218篇
  2017年   216篇
  2016年   177篇
  2015年   198篇
  2014年   323篇
  2013年   349篇
  2012年   287篇
  2011年   360篇
  2010年   276篇
  2009年   333篇
  2008年   352篇
  2007年   379篇
  2006年   329篇
  2005年   283篇
  2004年   221篇
  2003年   244篇
  2002年   205篇
  2001年   146篇
  2000年   139篇
  1999年   158篇
  1998年   126篇
  1997年   137篇
  1996年   105篇
  1995年   89篇
  1994年   90篇
  1993年   119篇
  1992年   88篇
  1991年   68篇
  1990年   59篇
  1989年   55篇
  1988年   60篇
  1987年   43篇
  1986年   61篇
  1985年   103篇
  1984年   161篇
  1983年   99篇
  1982年   114篇
  1981年   81篇
  1980年   87篇
  1979年   85篇
  1978年   44篇
  1977年   34篇
  1976年   38篇
  1975年   35篇
  1974年   24篇
排序方式: 共有7882条查询结果,搜索用时 15 毫秒
71.
In this paper we present a conceptual model of integrated plant-soil interactions which illustrates the importance of identifying the primary belowground feedbacks, both positive and negative, which can simultaneously affect plant growth responses to elevated CO2. The primary negative feedbacks share the common feature of reducing the amount of nutrients available to plants. These negative feedbacks include increased litter C/N ratios, and therefore reduced mineralization rates, increased immobilization of available nutrients by a larger soil microbial pool, and increased storage of nutrients in plant biomass and detritus due to increases in net primary productivity (NPP). Most of the primary positive feedbacks share the common feature of being plant mediated feedbacks, the only exception being Zak et al.'s hypothesis that increased microbial biomass will be accompanied by increased mineralization rates. Plant nutrient uptake may be increased through alterations in root architecture, physiology, or mycorrhizal symbioses. Further, the increased C/N ratios of plant tissue mean that a given level of NPP can be achieved with a smaller supply of nitrogen.Identification of the net plant-soil feedbacks to enhanced productivity with elevated CO2 are a critical first step for any ecosystem. It is necessary, however, that we first identify how universally applicable the results are from one study of one ecosystem before ecosystem models incorporate this information. The effect of elevated CO2 on plant growth (including NPP, tissue quality, root architecture, mycorrhizal symbioses) can vary greatly for different species and environmental conditions. Therefore it is reasonable to expect that different ecosystems will show different patterns of interacting positive and negative feedbacks within the plant-soil system. This inter-ecosystem variability in the potential for long-term growth responses to rising CO2 levels implies that we need to parameterize mechanistic models of the impact of elevated CO2 on ecosystem productivity using a detailed understanding of each ecosystem of interest.  相似文献   
72.
J. Hassink 《Plant and Soil》1995,176(1):71-79
Different methods for estimating the non-fertilizer N supply (NFNS) of mineral grassland soils were compared. NFNS was defined as the N uptake on unfertilized plots. The potential mineralization rate (0–12 weeks), macroorganic matter and active microbial biomass (determined by the substrate-induced respiration method; SIR) were correlated positively with NFNS. The difference between the actual soil organic N or microbial N content (determined by the fumigation incubation method) and their contents under equilibrium conditions ( org. N and MB-N), however, gave the best estimations of NFNS. For field conditions the best estimation for NFNS was: NFNS (kg N ha–1 yr–1)=132.3+42.1× org. N (g kg–1 soil; r=0.80). This method is based on the observation that, under old grassland swards, close relationships exist between soil texture and the amounts of soil organic N and microbial N. These relationships are assumed to represent equilibrium conditions as under old swards under constant management, the gain in soil organic N and microbial N equals the losses. Soils under young grassland and recently reclaimed soils contained less soil organic N and microbial N. In such soils the amounts of organic N and microbial N increase with time, which is reflected in a lower NFNS. The annual accumulation of organic and microbial N gradually becomes smaller until organic N, microbial N and NFNS reach equilibrium. The main advantage of the difference method in comparison with the other methods is its speed and simplicity.FAX no: +31 50337291  相似文献   
73.
Brain CCK receptors are structurally distinct from pancreas CCK receptors   总被引:3,自引:0,他引:3  
Brain and pancreas cholecystokinin (CCK) receptors differ markedly in their selectivity for CCK analogs. To determine the size and subunit structure of the brain CCK receptor and compare it to that of the pancreas, 125I-CCK33 was covalently cross-linked with ultraviolet light to its receptor on mouse brain particles and purified pancreatic plasma membranes. When CCK was crosslinked to brain membranes, a single consistent major labeled protein band of Mr = 55,000 was observed in both the presence and the absence of DTT. These data with brain receptors contrast to results with pancreatic receptors where two bands of Mr = 120,000 and 80,000 are labeled in the absence and presence of DTT, respectively. These studies indicate, therefore, that the brain and pancreas CCK receptors are structurally and functionally distinct.  相似文献   
74.
Erythrina cristagalli agglutinin, a dimeric lectin [J. L. Iglesias, et al. (1982) Eur. J. Biochem.123, 247–252] was shown by equilibrium dialysis to be bivalent for 4-methylumbelliferyl-β-d-galactoside. Upon binding to the lectin, this ligand showed a difference absorption spectrum with two maxima (at 322 and 336 nm) of equal intensity (Δ? = 1.2 × 103m?1 cm?1). A similar spectrum with a comparable value of Δ? was obtained with 4-methylumbelliferyl-N-acetyl-β-d-galactosaminide. Binding of methyl-α-d-galactoside, lactose, and N-acetyllactosamine all produced small but equally intense protein difference spectra with a maximum (Δ? = 2.8 × 102 M?1 cm?1) at 291.6 nm. Upon binding of N-dansyl-d-galactosamine to the lectin, there was a fivefold increase in fluorescence intensity of this ligand. The association constant for N-dansyl-d-galactosamine was caused by a very favorable ΔS° of the dansyl group without affecting the strictly carbohydrate-specific character of binding. N-Dansyl-d-galactosamine was employed as a fluorescent indicator ligand in substitution titrations. This involved the use of simple carbohydrates, N-acetyllactosamine, and oligosaccharides which occur in the carbohydrate units of N-glycoproteins; the latter were Gal(β → 4)GlcNAc(β1 → 2)Man, Gal(β1 → 4)GlcNAc(β1 → 6)Man, and Gal(β1 → 4)GlcNAc(β1 → 6)[Gal(β1 → 4)GlcNAc(β1 → 2)]Man. The titrations were performed at two temperatures to determine the thermodynamic parameters. In the series N-acetyl-d-galactosamine, methyl-α-d-galactoside, and lactose, ?ΔH° increased from 24 to 41 kJ mol?1; it increased further for N-acetyllactosamine and then remained unchanged for the N-acetyllactosamine-containing oligosaccharides (55 ± 1 kJ mol?1). This indicated that the site specifically accommodated the disaccharide structure with an important contribution of the 2-acetamido group in the penultimate sugar. Beyond this, no additional contacts seemed to be formed. This conclusion also followed from considerations of ΔS° values which became more unfavorable in the above series (?23 to ?101 ± 4 J mol?1 K?1); the most negative value of ΔS° was observed with N-acetyllactosamine and the three N-acetyllactosamine-containing oligosaccharides.  相似文献   
75.
The NAD-dependent oxidation of ethanol, 2,3-butanediol, and other primary and secondary alcohols, catalyzed by alcohol dehydrogenases derived from Penicillium charlesii, was investigated. Alcohol dehydrogenase, ADH-I, was purified to homogeneity in a yield of 54%. The enzyme utilizes several primary alcohols as substrates, with Km values of the order of 10?4m. A Km value of 60 mm was obtained for R,R,-2,3-butanediol. The stereospecificity of the oxidation of 2-butanol was investigated, and S-(+)-2-butanol was found to be oxidized 2.4 times faster than was R-(?)-2-butanol. The reduction of 2-butanone was shown to produce S-(+)-2-butanol and R-(?)-butanol in a ratio of 7:3. ADH-I is the primary isozyme of alcohol dehydrogenase present in cultures utilizing glucose as the sole carbon source. The level of alcohol dehydrogenase activity increased 7.6-fold in mycelia from cultures grown with glucose and 2,3-butanediol (0.5%) as carbon sources compared with the activity in cultures grown on only glucose. Two additional forms of alcohol dehydrogenase, ADH-II and ADH-III, were present in the cultures supplemented with 2,3-butanediol. These forms of alcohol dehydrogenase catalyze the oxidation of ethanol and 2,3-butanediol. These data suggest that P. charlesii carries out an oxidation of 2,3-butanediol which may constitute the first reaction in the degradation of 2,3-butanediol as well as the last reaction in the mixed-acid fermentation. Alcohol dehydrogenase activities in P. charlesii may be encoded by multiple genes, one which is expressed constitutively and others whose expression is inducible by 2,3-butanediol.  相似文献   
76.
The exchangeable amide protons of hyaluronic acid (HA) oligosaccharides and a higher-molecular-weight segment dissolved in H2O at pH 2.5 or 5.5 were examined by H NMR spectroscopy at 250 MHz. The HA segment preparation showed a single amide resonance, near the chemical shift for the amide proton of the monosaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose (beta-GlcNAc). Smaller HA oligosaccharides showed two or three separate amide proton resonances, corresponding in relative peak area to interior or end GlcNAc residues. The interior GlcNAc amide resonance occurred at the same chemical shift as the single resonance of the HA segment. For the end GlcNAc residues, linkage to D-glucuronopyranose (GlcUA) through C1 resulted in an upfield shift relative to the beta-anomer of GlcNAc, whereas linkage through C3 resulted in a downfield shift relative to the corresponding anomer of GlcNAc. These chemical-shift perturbations appeared to be approximately offsetting in the case of linkage at both positions. The amide proton vicinal coupling constant (ca. 9 Hz) was found to be essentially independent of chain length, residue position, or solution pH. These data favor a nearly perpendicular orientation for the acetamido group with respect to the sugar ring, little affected by linkage of GlcNAc to GlcUA. No evidence for the existence of a stable hydrogen bond linking the amide proton with the carboxyl(ate) oxygen of the adjacent uronic acid residue was found. The amide proton resonances for chondroitin, chondroitin 4-sulfate, and dermatan sulfate were compared to that of HA. The chemical shifts of these resonances deviated no more than 0.1 ppm from that of HA. A small dependence on the identity of the adjacent uronic acid residue was noted, based on the observation of two resonances for dermatan sulfate.  相似文献   
77.
A new para-diphenylmethyl derivative, N,N-diethyl-2-[(4-phenylmethyl)-phenoxy]-ethanamine·HCl (N,N-DPPE) has been synthesized which binds with high affinity to the anti-estrogen binding site found in male rat liver microsomes. However, no evidence of significant interaction with the estrogen receptor can be observed at or below 10 μM in rat uterine cytosols; 10 nM N,N-DPPE fails to significantly induce progesterone receptor in MCF-7 cells. Tamoxifen also binds to anti-estrogen binding site but, unlike N,N-DPPE, binds significantly to estrogen receptor at much loeer concentrations and induces MCF-7 progesterone receptor. This property of high affinity for anti-estrogen binding site but not for estrogen receptor may make N,N-DPPE an important probe for the study of anti-estrogen binding site and its biological relevance.  相似文献   
78.
The dietary antagonism between copper and molybdate salts prompted a study of the inhibition of copper enzymes by thiomolybdate (TM). TM strongly inhibited the oxidase activity of five copper oxidase with I50% values in the 1-5 microM range. The mechanism of the TM effect on the copper oxidase, ceruloplasmin (Cp) (E.C. 1.16.3.1), was studied in detail. In Vmax vs. E plots, TM gave parallel data suggesting irreversibility but a large number of TM molecules per Cp were required. The inhibition of Cp by TM could not be reversed by dialysis. Isolation of TM-inhibited Cp on Sephadex G-10 did not yield any active Cp molecules. Cu(II) did not restore any inhibited oxidase activity. Gel electrophoresis supported the covalent binding of Cp by TM without any extensive change in protein structure. EPR results confirmed that Cu(II) is reduced to Cu(I) after reaction with TM. However, the Mo(VI) in MoS4(2-) did not change in oxidation number. Analysis of the TM-Cp compound accounted for all six Cu atoms as found in native Cp. The data suggest the covalent binding of sulfide to Cp copper. TM also inhibited the activity of ascorbate oxidase, cytochrome oxidase, superoxide dismutase, and tyrosinase. However, no inhibition of carbonic anhydrase, a zinc enzyme, was observed at 1 mM TM.  相似文献   
79.
Summary Field studies to determine the effect of zero and shallow (10 cm) cultivation on microbial biomass were conducted on several Chernozemic soils in western Canada. Using the CHCl3 fumigation method, the distribution of microbial biomass N and the immobilization and subsequent release of added15N (15N-urea) from the microbial biomass were determined in the A horizon, at the 0 to 5 and 5 to 10 cm depth, during the growing season for spring wheat.Temporal variation in microbial biomass N, associated with the development of the rhizosphere, was characterized by an increase between Feekes stage 1 and 5 or 10 and decrease at Feekes stage 11.4. Over the long term, the variation in biomass N between tillage systems corresponded with crop residue distribution. Immobilization of fertilizer N was related to the increase in biomass N from Feekes stage 1, which in turn, was associated with the incorporation of recent crop residues or levels of labile organic matter in the surface soil. The study demonstrated the relatively rapid remineralization of immobilized fertilizer N under field conditions and emphasized the role of the microbial biomass N as both a sink and source of mineral N.  相似文献   
80.
Summary The relative nitrogen fixation efficiencies (RE 1-[H2 evolved÷C2H2 reduced]·100) of four mesquite (Prosopis glandulosa var.torreyana) rhizobia (Strains WR 1001, WR 1002, L5, L9) and a cowpea rhizobia (Strain 176A32) on mesquite were evaluated in a glasshouse experiment. Plant yield, shoot N accumulation, and the natural15N abundance (15N) of nodule tissue were determined. Strain WR 1002 failed to nodulate mesquite and strain L5 produced ineffective nodules. Among the three effective strains (WR 1001, L9, 176A32) the cowpea strain (176A32) and strain L9 had significantly higher RE than strain WR 1001. Differences in RE, however, were not accompanied by significantly higher plant yield and shoot N accumulation. The difference in15N abundance between foliar tissue and nodules (nodules minus leaves) was 0.47 15N for the ineffective L5 nodules, while for the effective WR 1001, L9, and 176A32 nodules, respectively, this difference was 8.35, 7.81, and 8.35 15N. This indicates a similar relationship between N2-fixing effectiveness and natural15N enrichment of nodules that was previously observed in soybeans (Glycine max, L. Merr.). Strains WR 1001 and L9 produced elongate, indeterminate nodules typical for mesquite. The ineffective L5 nodules had few infected cells and an abundance of cortical amyloplasts. Mesquite nodules produced by the cowpea strain were spherical and were somewhat more similar in internal morphology to determinate nodules typical of cowpea than indeterminate nodules normally associated with mesquite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号