首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7067篇
  免费   1146篇
  国内免费   454篇
  8667篇
  2024年   32篇
  2023年   167篇
  2022年   163篇
  2021年   253篇
  2020年   335篇
  2019年   351篇
  2018年   299篇
  2017年   301篇
  2016年   354篇
  2015年   355篇
  2014年   395篇
  2013年   558篇
  2012年   336篇
  2011年   343篇
  2010年   281篇
  2009年   304篇
  2008年   354篇
  2007年   392篇
  2006年   324篇
  2005年   287篇
  2004年   292篇
  2003年   259篇
  2002年   223篇
  2001年   200篇
  2000年   157篇
  1999年   147篇
  1998年   142篇
  1997年   99篇
  1996年   92篇
  1995年   107篇
  1994年   68篇
  1993年   91篇
  1992年   73篇
  1991年   72篇
  1990年   50篇
  1989年   58篇
  1988年   47篇
  1987年   36篇
  1986年   32篇
  1985年   34篇
  1984年   36篇
  1983年   24篇
  1982年   24篇
  1981年   15篇
  1980年   22篇
  1979年   16篇
  1978年   13篇
  1977年   14篇
  1976年   10篇
  1975年   10篇
排序方式: 共有8667条查询结果,搜索用时 0 毫秒
101.
Intergenerational fitness effects on offspring due to the early life of the parent are well studied from the standpoint of the maternal environment, but intergenerational effects owing to the paternal early life environment are often overlooked. Nonetheless, recent laboratory studies in mammals and ecologically relevant studies in invertebrates predict that paternal effects can have a major impact on the offspring's phenotype. These nongenetic, environment‐dependent paternal effects provide a mechanism for fathers to transmit environmental information to their offspring and could allow rapid adaptation. We used the bank vole Myodes glareolus, a wild rodent species with no paternal care, to test the hypothesis that a high population density environment in the early life of fathers can affect traits associated with offspring fitness. We show that the protein content in the diet and/or social environment experienced during the father's early life (prenatal and weaning) influence the phenotype and survival of his offspring and may indicate adaptation to density‐dependent costs. Furthermore, we show that experiencing multiple environmental factors during the paternal early life can lead to a different outcome on the offspring phenotype than stimulated by experience of a single environmental factor, highlighting the need to study developmental experiences in tandem rather than independent of each other.  相似文献   
102.
Many species are undergoing distributional shifts in response to climate change. However, wide variability in range shifting rates has been observed across taxa, and even among closely‐related species. Attempts to link climate‐mediated range shifts to traits has often produced weak or conflicting results. Here we investigate interactive effects of developmental processes and environmental stress on the expression of traits relevant to range shifts. We use an individual‐based modelling approach to assess how different developmental strategies affect range shift rates under a range of environmental conditions. We find that under stressful conditions, such as at the margins of the species’ fundamental niche, investment in prolonged development leads to the greatest rates of range shifting, especially when longer time in development leads to improved fecundity and dispersal‐related traits. However, under benign conditions, and when traits are less developmentally plastic, shorter development times are preferred for rapid range shifts, because higher generational frequency increases the number of individual dispersal events occurring over time. Our results suggest that the ability of a species to range shift depends not only on their dispersal and colonisation characteristics but also how these characteristics interact with developmental strategies. Benefits of any trait always depended on the environmental and developmental sensitivity of life history trait combinations, and the environmental conditions under which the range shift takes place. Without considering environmental and developmental sources of variation in the expression of traits relevant to range shifts, there is little hope of developing a general understanding of intrinsic drivers of range shift potential.  相似文献   
103.
We previously developed Hokushin wheat line as a hypoallergenic wheat lacking ω5-gliadin (1BS-18), a major allergen for wheat-dependent exercise-induced anaphylaxis. However, the allergenicity of 1BS-18 has not been understood completely. In this study, we evaluated the allergenicity of 1BS-18 such as anaphylactic elicitation ability and sensitization ability using rats sensitized with ω5-gliadin or glutens prepared from Hokushin (Hokushin gluten) or 1BS-18 (1BS-18 gluten). Rats were sensitized by intraperitoneal administration of ω5-gliadin, Hokushin gluten or 1BS-18 gluten. Immunoglobulin E-mediated systemic anaphylaxis was evaluated by measuring changes in rectal temperature for 30 min after intravenous challenge with ω5-gliadin or the test glutens in unsensitized rats or rats sensitized with ω5-gliadin or the test glutens. In ω5-gliadin-sensitized rats, intravenous challenge with ω5-gliadin or Hokushin gluten significantly decreased the rectal temperature at 30 min after challenge while challenge with 1BS-18 gluten did not reduce the rectal temperature. Furthermore, intravenous challenge with ω5-gliadin significantly decreased the rectal temperature in rats sensitized with Hokushin gluten or 1BS-18 gluten. However, the reduced degree observed in 1BS-18 gluten-sensitized rats was smaller than that in Hokushin gluten-sensitized rats. In conclusion, 1BS-18 elicited no allergic reaction in ω5-gliadin-sensitized rats and had less sensitization ability for ω5-gliadin than that of Hokushin wheat.  相似文献   
104.
105.
常见寿命数据类型及生命表的编制方法   总被引:1,自引:0,他引:1  
生命表是描述种群死亡过程的有用工具,介绍了4种常见的寿命数据类型;寿终数据,右删失数据,左删失数据和区间型数据特征及其相应的数据分析处理方法即生命表法,乘积限估计和Turbull估计法,对生命表法和乘积限估计法应用上的特点进行了比较,同时还对特殊的寿命数据类型--截断数据做了简要介绍。  相似文献   
106.
Reproduction requires resources that cannot be allocated to other functions resulting in direct reproductive costs (i.e. trade-offs between current reproduction and subsequent survival/reproduction). In wild vertebrates, direct reproductive costs have been widely described in females, but their occurrence in males remains to be explored. To fill this gap, we gathered 53 studies on 48 species testing direct reproductive costs in male vertebrates. We found a trade-off between current reproduction and subsequent performances in 29% of the species and in every clade. As 73% of the studied species are birds, we focused on that clade to investigate whether such trade-offs are associated with (i) levels of paternal care, (ii) polygyny or (iii) pace of life. More precisely for this third question, it is expected that fast species (i.e. short lifespan, early maturity, high fecundity) pay a cost in terms of survival, whereas slow species (with opposite characteristics) do so in terms of fecundity. Our findings tend to support this hypothesis. Finally, we pointed out the potential confounding effects that should be accounted for when investigating reproductive costs in males and strongly encourage the investigation of such costs in more clades to understand to what extent our results are relevant for other vertebrates.  相似文献   
107.
Pericarp polypeptide profiles were analyzed at three ripening stages in the F1 hybrid and the F2 population from the cross between the accessions: LA1385 (Lycopersicon esculentum var. cerasiforme) and 804627 (L. esculentum, a homozygous genotype for the nor mutant). Six polymorphic polypeptides were observed in LA1385, while no polymorphic polypeptides among ripening stages was observed in 804627. On the other hand, some polypeptides in the F1 hybrid were not observed in the parents whereas others were present in both parental genotypes and were unnoticeable in the hybrid genotype. From a cluster analysis on the protein profiles of the F2 population, the differential expression of proteins allowed to distinguish mature green (MG) stage from the others two stages, while for breaker stage (BR) and red ripe stage, the genetic background was more important in forming groups. The differential expression of proteins could be associated with fruit morphology traits such as a 72 kDa polypeptide present in MG stage with fruit diameter, height and mass and a 47 kDa polypeptide found in BR with fruit shelf life.  相似文献   
108.
Diversity in life history tactics contributes to the persistence of a population because it helps to protect against stochastic environments by varying individuals in space and time. However, some life history tactics may not be accounted for when assessing the demographic viability of a population. One important factor in demographic viability assessments is cohort replacement rate (CRR), which is defined as the number of future adults produced by an adult. We assessed if precocial resident males (<age‐3) and adfluvial Chinook salmon (Oncorhynchus tshawytscha), adults that reside in freshwater their entire lives, contributed offspring to a reintroduced population from 2008 to 2013. We found that 9 ± 5% of offspring with an unassigned parent remained unexplained after accounting for sources of human error. Using grandparentage assignments, we identified 31 precocial resident males and 48 probable adfluvial Chinook salmon produced by anadromous mate pairs from 2007 to 2012. Previously published CRR estimates for the 2007 and 2008 reintroduced adults, based on only anadromous returning adult offspring, were 0.40 and 0.31, respectively. By incorporating adfluvial females, we found CRR estimates increased by 17% (CRR: 0.46) and 13% (CRR: 0.35) for the 2007 and 2008 cohorts, respectively.  相似文献   
109.
110.
本文通过电镜扫描、石腊切片及用苏木精染色法和DAPI荧光染色,对榆耳子实体有性结构进行观察,证实榆耳子实体菌盖结构分三层:上表层为毛层,表面着生有排列较密集顶端游离的菌丝,它们相互粘连呈菌丝束;中间层为髓部,由较疏松而相互交织在一起的薄壁菌丝组成,菌丝间充满胶质物质;下表层为子实层,表面起伏不平,呈不规则的疣状突起,上面着生担子和囊状体,担子无隔膜棍棒形,外表有不规则的网状纹饰,其顶部着生4个瓶梗状小梗,每个小梗上着生1个椭圆形或腊肠形担孢子,大小为2.5—3.0×6.0—6.5μm,担孢子表面有不规则的网状纹饰结构。在担子间的囊状体为长圆柱形或圆锥形,表面有较密的不规则的网状纹饰。 榆耳有性生殖为异宗配合。绝大多数担孢子含一个细胞核,很少数担孢子含两个细胞核。孢子萌发为一端萌发,也有少数为两端萌发。初生菌丝单核,不能形成子实体,当两种不同遗传性的交配型的初生菌丝结合后,形成具有锁状联合结构的双核菌丝,并可发育成子实体。榆耳具有典型减数分裂过程,不具有减数分裂后核分裂行为,四个子核分别进入四个担孢子内。 在初生菌丝或次生菌丝上,均可产生间生的或顶生的厚垣孢子。经过温度、光照和紫外线照射的诱发,均未发现有其它类型的无性孢子产生。因此,榆耳菌的生活史和大多数担子  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号