首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1509篇
  免费   244篇
  国内免费   144篇
  2024年   8篇
  2023年   44篇
  2022年   20篇
  2021年   43篇
  2020年   78篇
  2019年   77篇
  2018年   89篇
  2017年   74篇
  2016年   91篇
  2015年   73篇
  2014年   66篇
  2013年   86篇
  2012年   52篇
  2011年   73篇
  2010年   42篇
  2009年   82篇
  2008年   96篇
  2007年   84篇
  2006年   83篇
  2005年   82篇
  2004年   66篇
  2003年   43篇
  2002年   63篇
  2001年   52篇
  2000年   41篇
  1999年   30篇
  1998年   41篇
  1997年   18篇
  1996年   29篇
  1995年   14篇
  1994年   22篇
  1993年   14篇
  1992年   20篇
  1991年   10篇
  1990年   19篇
  1989年   8篇
  1988年   8篇
  1987年   10篇
  1986年   5篇
  1985年   11篇
  1984年   4篇
  1983年   9篇
  1982年   1篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1977年   1篇
  1976年   4篇
  1974年   1篇
  1958年   1篇
排序方式: 共有1897条查询结果,搜索用时 328 毫秒
41.
An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner‐Alpine regions, the species composition in low elevation forests is changing: The sub‐boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub‐Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger‐scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed‐effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small‐diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services.  相似文献   
42.
With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH4) emissions from wetlands and increased CH4 consumption of meadows, but might increase CH4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO2) and CH4. Nitrous oxide (N2O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.  相似文献   
43.
The SER Primer on Ecological Restoration provides a succinct introduction to, and overview of, the rapidly growing field of ecological restoration. The Primer was issued initially in 2002 by the Society for Ecological Restoration (SER) and reissued verbatim 2 years later in a more attractive format ( http://www.ser.org/resources;resources-detail-view/ser-international-primer-on-ecological-restoration ). A SER committee recently began deliberations to update the Primer, and much discussion is underway. As two of the Primer's principal authors, we were invited to share our views on how the Primer can be advantageously revised in the light of any changes or new insights since 2002. In particular, we were asked how the Primer might be modified to reflect the ways that ecological restoration address conservation issues raised by climate change and other rapid environmental shifts and global changes. We also touch on questions relating to the benefits of ecological restoration to human society, as this is an area where the Primer needs sharper focus. We have structured the following in a ‘Frequently Asked Questions’ format to highlight issues raised in the recent literature and to focus attention on other issues that merit consideration in the Primer revision process.  相似文献   
44.
Human land-use changes are particularly extensive in tropical regions, representing one of the greatest threats to terrestrial biodiversity and a key research topic in conservation. However, studies considering the effects of different types of anthropogenic disturbance on the functional dimension of biodiversity in human-modified landscapes are rare. Here, we obtained data through an extensive review of peer-reviewed articles and compared 30 Neotropical bat assemblages in well-preserved primary forest and four different human-disturbed habitats in terms of their functional and taxonomic diversity. We found that disturbed habitats that are structurally less similar to primary forest (pasture, cropland, and early-stage secondary forest) were characterized by a lower functional and taxonomic diversity, as well as community-level functional uniqueness. These habitats generally retained fewer species that perform different ecological functions compared to higher-quality landscape matrices, such as agroforestry. According to functional trait composition, different bat ensembles respond differently to landscape change, negatively affecting mainly gleaning insectivorous bats in pasture, narrow-range species in cropland, and heavier animalivorous bats in secondary forest. Although our results highlight the importance of higher-quality matrix habitats to support elevated functional and taxonomic bat diversity, the conservation of bat species that perform different ecological functions in the mosaic of human-modified habitats also depends on the irreplaceable conservation value of well-preserved primary forests. Our study based on a pooled analysis of individual studies provides novel insights into the effects of different human-modified habitats on Neotropical bat assemblages.  相似文献   
45.
The adaptation of translocated organisms to a new environment in the first years after their release is crucial in translocation programs because it may affect survival and reproductive success. Therefore, identifying the factors determining resource selection by the relocated animals is essential to improve the planning and the outcome of such programs. Using data collected in 2006–2009 in the framework of a restocking program, we studied the temporal variation of habitat selection in 14 translocated Alpine ibex (Capra ibex) during the year of their release and the following 3 years. We hypothesized a progressive adaptation of the translocated individuals, highlighted by a gradual decrease in the dissimilarities between translocated and resident individuals in ecological characteristics and social behavior. We tested the differences in habitat selection and home range size between the translocated and resident individuals and compared the spatial overlap between the groups. As expected, the dissimilarities decreased annually. The translocated and resident ibex almost immediately selected the same habitat resources, but the translocated individuals required 3 years to become fully socially assimilated. Our results indicated that habitat selection by gregarious species in a new environment is primarily driven by specific ecological requirements and that sociality plays a significant role. The translocated individuals tended to colonize areas already occupied by residents, either to fulfill social requirements and/or because the location of resident individuals may indicate high-quality habitat. This pattern of behavior must be considered in the planning of translocation programs because habitat selection can affect the outcomes of the programs. © 2013 The Wildlife Society.  相似文献   
46.
The present text exposes a theory of the role of disturbances in the assemblage and evolution of species within ecosystems, based principally, but not exclusively, on terrestrial ecosystems. Two groups of organisms, doted of contrasted strategies when faced with environmental disturbances, are presented, based on the classical r‐K dichotomy, but enriched with more modern concepts from community and evolutionary ecology. Both groups participate in the assembly of known animal, plant, and microbial communities, but with different requirements about environmental fluctuations. The so‐called “civilized” organisms are doted with efficient anticipatory mechanisms, allowing them to optimize from an energetic point of view their performances in a predictable environment (stable or fluctuating cyclically at the scale of life expectancy), and they developed advanced specializations in the course of evolutionary time. On the opposite side, the so‐called “barbarians” are weakly efficient in a stable environment because they waste energy for foraging, growth, and reproduction, but they are well adapted to unpredictably changing conditions, in particular during major ecological crises. Both groups of organisms succeed or alternate each other in the course of spontaneous or geared successional processes, as well as in the course of evolution. The balance of “barbarians” against “civilized” strategies within communities is predicted to shift in favor of the first type under present‐day anthropic pressure, exemplified among others by climate warming, land use change, pollution, and biological invasions.  相似文献   
47.
Eucalypts face increasing climate stress   总被引:1,自引:0,他引:1  
Global climate change is already impacting species and ecosystems across the planet. Trees, although long‐lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid‐range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid‐range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east–west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental interior, will change dramatically in terms of species composition and ecosystem structure.  相似文献   
48.
Grazing and fencing are two important factors that influence productivity and biomass allocation in alpine grasslands. The relationship between root (R) and shoot (S) biomass and the root:shoot ratio (R/S) are critical parameters for estimating the terrestrial carbon stocks and biomass allocation mechanism responses to human activities. Previous studies have often used the belowground:aboveground biomass ratio (Mb/Ma) to replace the R/S in alpine ecosystems. However, these studies may have neglected the leaf meristem biomass, which belongs to the shoot but occurs below the soil surface, leading to a significant overestimation of the R/S ratio. We conducted a comparative study to explore the differences between the R/S and Mb/Ma at both the species (Stipa purpurea, Carex moorcroftii, and Artemisia nanschanica) and community levels on a Tibetan alpine grassland with grazing and fencing management blocks. The results revealed that the use of the Mb/Ma to express the R/S appeared to overestimate the actual value of the R/S, both at species and community levels. For S. purpurea, the Mb/Ma was three times higher than the R/S. The Mb/Ma was approximately two times higher than the R/S for the species of C. moorcroftii and A. nanschanica and at the community level. The relationships between the R‐S and MbMa exhibited different slopes for the alpine plants across all the management practices. Compared to the fenced grasslands, the plants in the grazing blocks not only allocated more biomass to the roots but also to the leaf meristems. The present study highlights the contribution of leaf meristems to the accurate assessment of shoot and belowground biomasses. The R/S and Mb/Ma should be cautiously used in combination in the future research. The understanding of the distinction between the R‐S and MbMa may help to improve the biomass allocation mechanism response to human disturbances in an alpine area.  相似文献   
49.
Climate warming is predicted to affect species and trophic interactions worldwide, and alpine ecosystems are expected to be especially sensitive to changes. In this study, we used two ongoing climate warming (open‐top chambers) experiments at Finse, southern Norway, to examine whether warming had an effect on herbivory by leaf‐chewing insects in an alpine Dryas heath community. We recorded feeding marks on the most common vascular plant species in warmed and control plots at two experimental sites at different elevations and carried out a brief inventory of insect herbivores. Experimental warming increased herbivory on Dryas octopetala and Bistorta vivipara. Dryas octopetala also experienced increased herbivory at the lower and warmer site, indicating an overall positive effect of warming, whereas B. vivipara experienced an increased herbivory at the colder and higher site indicating a mixed effect of warming. The Lepidoptera Zygaena exulans and Sympistis nigrita were the two most common leaf‐chewing insects in the Dryas heath. Based on the observed patterns of herbivory, the insects life cycles and feeding preferences, we argue that Z. exulans is the most important herbivore on B. vivipara, and S. nigrita the most important herbivore on D. octopetala. We conclude that if the degree of insect herbivory increases in a warmer world, as suggested by this study and others, complex interactions between plants, insects, and site‐specific conditions make it hard to predict overall effects on plant communities.  相似文献   
50.
The nutrients animals ingest are allocated to serve different functions. We used contrasting C stable isotope signatures of dominant vegetation types in a North American subtropical desert to decipher how avian consumers allocate nutrients to fuel oxidative metabolism and to construct tissues. We conducted C stable isotope analysis of breath and feathers collected from nectarivores (hummingbirds) and of breath, plasma, and red blood cell samples collected from frugivores, granivores, and insectivores. Based on varying nutrient characteristics of food sources, we expected that for frugivores and granivores, CAM‐derived food (RCCAM) would have similar importance for oxidative metabolism and for tissue building, that RCCAM in nectarivores and insectivores would be more important for fueling metabolism than for generating tissues, and that (although low) RCCAM in insectivores would be higher for sustaining metabolism than for building tissues. Our predictions held true for nectarivores and granivores, but RCCAM use in tissue building was lower than expected in frugivores and higher than expected in insectivores. Our examination at the trophic guild, population, and individual levels showed that in general, nutrients used to sustain oxidative metabolism and tissue construction had a uniform isotopic origin. This finding suggests that the avian community under investigation does not route different food groups to fulfill different needs. However, we found some exceptions, indicating that birds can use different food sources for different functions, irrespective of trophic guild.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号