首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   15篇
  国内免费   4篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   10篇
  2019年   11篇
  2018年   12篇
  2017年   5篇
  2016年   8篇
  2015年   6篇
  2014年   29篇
  2013年   42篇
  2012年   19篇
  2011年   48篇
  2010年   44篇
  2009年   35篇
  2008年   33篇
  2007年   28篇
  2006年   26篇
  2005年   26篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   7篇
  1996年   8篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   5篇
  1985年   6篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
排序方式: 共有513条查询结果,搜索用时 31 毫秒
121.
Iodotrimethylsilane (TMSI), routinely used for the dealkylation of ethers and esters, has been found to efficiently convert allyl and benzyl phosphotriesters into the corresponding iodides under mild, Brønsted-neutral conditions. In contrast, alkyl and aryl phosphotriesters were dealkylated to the corresponding phosphates under identical conditions.  相似文献   
122.
Glutathione transferases are a family of enzymes that are traditionally known to contribute to the phase II class of detoxification reactions. However, a novel property of the Schistosoma japonicum glutathione transferase (Sj.GST26) involves its translocation from the external medium into a variety of different cell types. Here we explore the efficiency and mechanism of cell entry for this class of protein. Using flow cytometry and confocal microscopy, we have examined the internalisation of Sj.GST26 into live cells under a variety of conditions designed to shed light on the mode of cellular uptake. Our results show that Sj.GST26 can effectively enter cells through an energy-dependent event involving endocytosis. More specifically, Sj.GST26 was found to colocalise with transferrin within the cell indicating that the endocytosis process involves clathrin-coated pits. A comprehensive study into the cellular internalisation of proteins from other classes within the GST structural superfamily has also been conducted. These experiments suggest that the ‘GST-fold’ structural motif influences cellular uptake, which presents a novel glimpse into an unknown aspect of GST function.  相似文献   
123.
The crystal structure of the l-rhamnose-binding lectin CSL3 was determined to 1.8 Å resolution. This protein is a component of the germline-encoded pattern recognition proteins in innate immunity. CSL3 is a homodimer of two 20 kDa subunits with a dumbbell-like shape overall, in which the N- and C-terminal domains of different subunits form lobe structures connected with flexible linker peptides. The complex structures of the protein with specific carbohydrates demonstrated the importance of the most variable loop region among homologues for the specificity toward oligosaccharides. CSL3 and Shiga-like toxin both use Gb3 as a cellular receptor to evoke apoptosis. They have very different overall architecture but share the separation distance between carbohydrate-binding sites. An inspection of the structure database suggested that the pseudo-tetrameric structure of CSL3 was unique among the known lectins. This architecture implies this protein might provide a unique tool for further investigations into the relationships between architecture and function of pattern recognition proteins.  相似文献   
124.
A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by myosin light-chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ∼ 23-37% of that in gizzard tissue. Fifteen to 30% of MLCK was associated with CaM at ∼ 1 nM free [Ca2+]. There were two MLCK pools that bound unphosphorylated SMM with Kd ∼ 10 and 0.2 μM and phosphorylated SMM with Kd ∼ 20 and 0.2 μM. Using an in vitro motility assay to measure actin sliding velocities, we showed that the co-purifying MLCK-CaM was activated by Ca2+ and phosphorylation of SMM occurred at a pCa50 of 6.1 and at a Hill coefficient of 0.9. Similar properties were observed from reconstituted MLCK-CaM-SMM. Using motility assays, co-sedimentation assays, and on-coverslip enzyme-linked immunosorbent assays to quantify proteins on the motility assay coverslip, we provide strong evidence that most of the MLCK is bound directly to SMM through the telokin domain and some may also be bound to both SMM and to co-purifying actin through the N-terminal actin-binding domain. These results suggest that this MLCK may play a role in the initiation of contraction.  相似文献   
125.
Current treatment for advanced, metastatic melanoma is not very effective, and new modalities are needed. ADI-PEG20 is a drug that specifically targets ASS-negative malignant melanomas while sparing the ASS-expressing normal cells. Although laboratory research and clinical trials showed promising results, there are some ASS-negative cell lines and patients that can develop resistance to this drug. In this report, we combined ADI-PEG20 with another antitumor drug TRAIL to increase the killing of malignant melanoma cells. This combination can greatly inhibit cell growth (to over 80%) and also enhanced cell death (to over 60%) in four melanoma cell lines tested compared with control. We found that ADI-PEG20 could increase the cell surface receptors DR4/5 for TRAIL and that caspase activity correlated with the increased cell death. These two drugs could also increase the level of Noxa while decrease that of survivin. We propose that these two drugs can complement each other by activating the intrinsic and extrinsic apoptosis pathways, thus enhance the killing of melanoma cells.  相似文献   
126.
We have identified a membrane-active region in the HCV NS4B protein by studying membrane rupture induced by a NS4B-derived peptide library on model membranes. This segment corresponds to one of two previously predicted amphipathic helix and define it as a new membrane association domain. We report the binding and interaction with model membranes of a peptide patterned after this segment, peptide NS4BH2, and show that NS4BH2 strongly partitions into phospholipid membranes, interacts with them, and is located in a shallow position in the membrane. Furthermore, changes in the primary sequence cause the disruption of the hydrophobicity along the structure and prevent the resulting peptide from interacting with the membrane. Our results suggest that the region where the NS4BH2 is located might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex. Our findings therefore identify an important region in the HCV NS4B protein which might be implicated in the HCV life cycle and possibly in the formation of the membranous web.  相似文献   
127.
The roles of T lymphocytes in the central nervous system (CNS) are diverse; their roles in the injured CNS have been reported to be both detrimental and advantageous. Hence, an investigation of the effects of specific subsets of T cells on neurons may provide an insight into the interaction between the nervous system and the immune system. In the present study, we demonstrate that a specific subset of T lymphocytes enhanced neurite outgrowth in vitro. When cultured T helper type 1 (Th1) cells were co-cultured with cortical neurons, neurite outgrowth from neurons was enhanced; however, the same was not observed when Th2 or naïve T cells were used. We observed that the promotion of neurite outgrowth by Th1 cells was completely inhibited by anti-interferon γ (IFN-γ) neutralizing antibody, but that IFN-γ did not directly promote neurite growth. Furthermore, experiments using knockout mice revealed that semaphorin 4A (Sema4A) but not Sema7A was required for the effect produced by Th1 cells. These results demonstrate that Sema4A and IFN-γ expressed in Th1 cells play a critical role in enhancing neurite outgrowth from cortical neurons.  相似文献   
128.
129.
The membrane bound cytochrome b558 composed of large gp91-phox and small p22-phox subunits, and cytosolic proteins p40-, p47- and p67-phox are important components of superoxide ()-generating system in phagocytes and B lymphocytes. A lack of this system in phagocytes is known to cause serious life-threatening infections. Here, we describe that curcumin, a polyphenol responsible for the yellow color of curry spice turmeric, dramatically activates the -generating system during retinoic acid (RA)-induced differentiation of human monoblastic leukemia U937 cells to macrophage-like cells. When U937 cells were cultured in the presence of RA and curcumin, the -generating activity increased more than 4-fold compared with that in the absence of the latter. Semiquantitative RT-PCR showed that co-treatment with RA and curcumin slightly enhanced gene expressions of the five components compared with those of the RA-treatment only. On the other hand, immunoblot analysis revealed that co-treatment with RA and curcumin caused remarkable accumulation of protein levels of p47-phox (to 7-fold) and p67-phox (to 4-fold) compared with those of the RA-treatment alone. These results suggested that curcumin dramatically enhances RA-induced -generating activity via accumulation of cytosolic p47-phox and p67-phox proteins in U937 cells. Therefore, it should have the potential as an effective modifier in therapy of leukemia and/or as an immunopotentiator.  相似文献   
130.
Yeast Hsp104 is a ring-forming ATP-dependent protein disaggregase that, together with the cognate Hsp70 chaperone system, has the remarkable ability to rescue stress-damaged proteins from a previously aggregated state. Both upstream and downstream functions for the Hsp70 system have been reported, but it remains unclear how Hsp70/Hsp40 is coupled to Hsp104 protein remodeling activity.Hsp104 is a multidomain protein that possesses an N-terminal domain, an M-domain, and two tandem AAA+ domains. The M-domain forms an 85-Å long coiled coil and is a hallmark of the Hsp104 chaperone family. While the three-dimensional structure of Hsp104 has been determined, the function of the M-domain is unclear. Here, we demonstrate that the M-domain is essential for protein disaggregation, but dispensable for Hsp104 ATPase- and substrate-translocating activities. Remarkably, replacing the Hsp104 M-domain with that of bacterial ClpB, and vice versa, switches species specificity so that our chimeras now cooperate with the noncognate Hsp70/DnaK chaperone system. Our results demonstrate that the M-domain controls Hsp104 protein remodeling activities in an Hsp70/Hsp40-dependent manner, which is required to unleash Hsp104 protein disaggregating activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号