首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3720篇
  免费   362篇
  国内免费   108篇
  4190篇
  2024年   14篇
  2023年   61篇
  2022年   86篇
  2021年   177篇
  2020年   162篇
  2019年   242篇
  2018年   214篇
  2017年   136篇
  2016年   89篇
  2015年   147篇
  2014年   271篇
  2013年   363篇
  2012年   167篇
  2011年   187篇
  2010年   165篇
  2009年   141篇
  2008年   162篇
  2007年   165篇
  2006年   144篇
  2005年   126篇
  2004年   103篇
  2003年   100篇
  2002年   99篇
  2001年   81篇
  2000年   52篇
  1999年   55篇
  1998年   47篇
  1997年   53篇
  1996年   39篇
  1995年   28篇
  1994年   56篇
  1993年   31篇
  1992年   28篇
  1991年   27篇
  1990年   9篇
  1989年   12篇
  1988年   14篇
  1987年   12篇
  1986年   14篇
  1985年   22篇
  1984年   21篇
  1983年   11篇
  1982年   9篇
  1981年   4篇
  1980年   8篇
  1979年   8篇
  1978年   7篇
  1976年   6篇
  1975年   4篇
  1974年   4篇
排序方式: 共有4190条查询结果,搜索用时 15 毫秒
981.
Demineralized bone implants have been used for many types of craniomaxillofacial, orthopedic, periodontal, and hand reconstruction procedures. In previous studies, we showed that demineralized bone powder (DBP) induces chondrogenesis of human dermal fibroblasts in a DBP/collagen sponge system that optimized interactions between particles of DBP and target cells in cell culture. In this study, we test the hypothesis that DBP promotes chondrogenesis or osteogenesis of human marrow stromal cells (hMSCs) in 3-D collagen sponge culture, depending upon the culture conditions. We first confirmed that hMSCs have chondrogenic potential when treated with TGF-, either in 2-D monolayer cultures or in 3-D porous collagen sponges. Second, we found that DBP markedly enhanced chondrogenesis in hMSCs in 3-D sponges, as assessed by metachromasia and expression of chondrocyte-specific genes AGGRECAN, COL II, and COL X. Human dermal fibroblasts (hDFs) were used to define mechanisms of chondroinduction because unlike hMSCs they have no inherent chondrogenic potential. In situ hybridization revealed that hDFs vicinal to DBPs express chondrocyte-specific genes AGGRECAN or COL II. Macroarray analysis showed that DBP activates TGF-/BMP signaling pathway genes in hDFs. Finally, DBP induced hMSCs to express the osteoblast phenotype when cultured with osteogenic supplements. These studies show how culture conditions can influence the differentiation pathway that human marrow stromal cells follow when stimulated by DBP. These results support the potential to engineer cartilage or bone in vitro by using human bone marrow stromal cells and DBP/collagen scaffolds.  相似文献   
982.
Toll-like receptors (TLRs) play a key role in pathogen recognition and regulation of the innate and adaptive immune responses. Although TLR expression and signaling have been investigated in blood cells, it is currently unknown whether their bone marrow ancestors express TLRs and respond to their ligands. Here we found that TLRs (e.g. TLR4, TLR7 and TLR8) were expressed by freshly isolated human bone marrow (BM) hematopoietic CD34+ progenitor cells. Incubation of these primitive cells with TLR ligands such as immunostimulatory small interfering RNAs and R848, a specific ligand for TLR7/8, induced cytokine production (e.g. IL1-beta, IL6, IL8, TNF-alpha, GM-CSF). Moreover, TLR7/8 signaling induced the differentiation of BM CD34+ progenitors into cells with the morphology of macrophages and monocytic dendritic precursors characterized by the expression of CD13, CD14 and/or CD11c markers. By contrast, R848 ligand did not induce the expression of glycophorin A, an early marker for erythropoiesis. Collectively, the data indicate for the first time that human BM CD34+ progenitor cells constitutively express functional TLR7/TLR8, whose ligation can induce leukopoiesis without the addition of any exogenous cytokines. Thus, TLR signaling may regulate BM cell development in humans.  相似文献   
983.
Objective: Roux‐en‐Y gastric bypass (RYGB) is considered to be the gold standard alternative treatment for severe obesity. Weight loss after RYGB results primarily from decreased food intake. Inadequate calcium (Ca) intake and metabolic bone disease can occur after gastric bypass. To our knowledge, whether malabsorption of Ca contributes to an altered Ca metabolism in the RYGB patient has not been addressed previously. Research Methods and Procedures: We recruited 25 extremely obese women in order to study true fractional Ca absorption (TFCA) before and 6 months after RYGB surgery, using a dual stable isotope method (42Ca and 43Ca) and test load of Ca (200 mg). Hormones regulating Ca absorption and markers of bone turnover were also measured. Results: In 21 women (BMI 52.7 ± 8.3 kg/m2, age 43.9 ± 10.4 years) who successfully completed the study, TFCA decreased from 0.36 ± 0.08 to 0.24 ± 0.09 (p < 0.001) after RYGB. Bone turnover markers increased significantly (p < 0.01). TFCA correlated with estradiol levels (r = 0.512, p < 0.02) and tended to correlate with 1,25 (OH)2D (r = 0.427, p < 0.06) at final measurement. Stepwise linear regression indicated that estradiol explained 62% of the variance for TFCA at 6 months post‐surgery (p < 0.01). Discussion: TFCA decreases (0.12 ± 0.08) after RYGB surgery but remains within normal range. Although only some patients were estimated to have low Ca absorption after surgery, all of the patients showed a dramatic increase in markers of bone resorption. The alteration in Ca metabolism after RYGB‐induced weight loss appears to be regulated primarily by estradiol levels and might ultimately affect bone mass.  相似文献   
984.
In this study, we examined whether local deferoxamine (DFO) administration can promote angiogenesis and bone repair in steroid-induced osteonecrosis of the femoral head (ONFH). Steroid-induced ONFH was induced in 65 mature male New Zealand white rabbits by methylprednisolone in combination with lipopolysaccharide. Six weeks later, the rabbits received no treatment (model group, N = 15), bilateral core decompression (CD group, N = 20) or CD in combination with local DFO administration (DFO group, N = 20). Six weeks after the surgery, vascularization in the femoral head was evaluated by ink artery infusion angiography and immunohistochemical staining for von Willebrand Factor (vWF). Bone repair was assessed by histologic analysis and micro-computed tomography (micro-CT). Immunohistochemical staining was performed to analyze the expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), bone morphogenetic protein-2 (BMP-2), and osteocalcin (OCN). Ink artery infusion angiography and microvessel analysis by immuohistochemical staining for vWF showed more blood vessels in the DFO group than other groups. The expression of HIF-1α, VEGF, BMP-2, and OCN, indicated by immunohistochemical staining, was higher in the DFO group compared with other groups. Micro-CT scanning results indicated that the DFO group had larger volume of newly formed bone than the CD group. This work indicated that local DFO administration improved angiogenesis and bone repair of early stage ONFH in rabbit model, and it may offer an efficient, economic, and simple therapy for early stage ONFH.  相似文献   
985.
Space flight with associated microgravity is complicated by "astronaut's anemia" and other hematologic abnormalities. Altered erythroid differentiation, red cell survival, plasma volume, and progenitor numbers have been reported. We studied the impact of microgravity on engraftable stem cells, culturing marrow cells in rotary wall vessel (RWV) culture chambers mimicking microgravity and in normal gravity nonadherent Teflon bottles. A quantitative competitive engraftment technique was assessed under both conditions in lethally irradiated hosts. We assessed 8-wk engraftable stem cells over a period spanning at least one cell cycle for cytokine (FLT-3 ligand, thrombopoietin [TPO], steel factor)-activated marrow stem cells. Engraftable stem cells were supported out to 56 h under microgravity conditions, and this support was superior to that seen in normal-gravity Teflon bottle cultures out to 40 h, with Teflon bottle culture support superior to RWV from 40 to 56 h. A nadir of stem cell number was seen at 40 h in Teflon and 48 h in RWV, suggesting altered marrow stem cell cycle kinetics under microgravity. This is the first study of engraftable stem cells under microgravity conditions, and the differences between microgravity and normal gravity cultures may present opportunities for unique future stem cell expansion strategies.  相似文献   
986.
Tissue engineering has recently evolved into a promising approach for annulus fibrosus (AF) regeneration. However, selection of an ideal cell source, which can be readily differentiated into AF cells of various regions, remains challenging because of the heterogeneity of AF tissue. In this study, we set out to explore the feasibility of using transforming growth factor‐β3‐mediated bone marrow stem cells (tBMSCs) for AF tissue engineering. Since the differentiation of stem cells significantly relies on the stiffness of substrate, we fabricated nanofibrous scaffolds from a series of biodegradable poly(ether carbonate urethane)‐urea (PECUU) materials whose elastic modulus approximated that of native AF tissue. We cultured tBMSCs on PECUU scaffolds and compared their gene expression profile to AF‐derived stem cells (AFSCs), the newly identified AF tissue‐specific stem cells. As predicted, the expression of collagen‐I in both tBMSCs and AFSCs increased with scaffold stiffness, whereas the expression of collagen‐II and aggrecan genes showed an opposite trend. Interestingly, the expression of collagen‐I, collagen‐II and aggrecan genes in tBMSCs on PECUU scaffolds were consistently higher than those in AFSCs regardless of scaffold stiffness. In addition, the cell traction forces (CTFs) of both tBMSCs and AFSCs gradually decreased with scaffold stiffness, which is similar to the CTF change of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that tBMSCs had strong tendency to differentiate into various types of AF cells and presented gene expression profiles similar to AFSCs, thereby establishing a rationale for the use of tBMSCs in AF tissue engineering.  相似文献   
987.
1,25-Dihydroxyvitamin D3 (1,25D) is involved in the regulation of proliferation and differentiation of a variety of cell types including cancer cells. In recent years, numerous new vitamin D3 analogs have been developed in order to obtain favorable therapeutic properties. The effects of a new 20-epi analog, CB1093 (20-epi-22-ethoxy-23-yne-24a,26a,27a-trihomo-1α,25(OH)2D3), on the proliferation and differentiation of human MG-63 osteosarcoma cell line were compared here with those of the parent compound 1,25D. Proliferation of the MG-63 cells was inhibited similarly by 22%, 50% and 59% after treatment with 0.1 μM 1,25D or CB1093 for 48 h, 96 h, and 144 h, respectively. In transfection experiments, the compounds were equipotent in stimulating reporter gene activity under the control of human osteocalcin gene promoter. In cell culture experiments, however, CB1093 was more potent than 1,25D at low concentrations and more effective for a longer period of time in activating the osteocalcin gene expression at mRNA and protein levels. Also, a 6-h pretreatment and subsequent culture for up to 120 h without 1,25D or CB1093 yielded higher osteocalcin mRNA and protein levels with analog-treated cells than with 1,25D-treated cells. The electrophoretic mobility shift assay (EMSA) revealed stronger VDR-VDRE binding with analog-treated MG-63 cells than with 1,25D-treated cells. The differences in the DNA binding of 1,25D-bound vs. analog-bound VDR, however, largely disappeared when the binding reactions were performed with recombinant hVDR and hRXRβ proteins. These results demonstrate that the new analog CB1093 was equally or even more effective than 1,25D in regulating all human osteosarcoma cell functions ranging from growth inhibition to marker gene expression and that the differences in effectivity most probably resulted from interactions of the hVDR:hRXRβ-complex with additional nuclear proteins. J. Cell. Biochem. 70:414–424, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
988.
T cells bearing γδ antigen receptors have been investigated as potential treatments for several diseases, including malignant tumours. However, the clinical application of γδT cells has been hampered by their relatively low abundance in vivo and the technical difficulty of inducing their differentiation from hematopoietic stem cells (HSCs) in vitro. Here, we describe a novel method for generating mouse γδT cells by co‐culturing HSC‐enriched bone marrow cells (HSC‐eBMCs) with induced thymic epithelial cells (iTECs) derived from induced pluripotent stem cells (iPSCs). We used BMCs from CD45.1 congenic C57BL/6 mice to distinguish them from iPSCs, which expressed CD45.2. We showed that HSC‐eBMCs and iTECs cultured with IL‐2 + IL‐7 for up to 21 days induced CD45.1+ γδT cells that expressed a broad repertoire of Vγ and Vδ T‐cell receptors. Notably, the induced lymphocytes contained few or no αβT cells, NK1.1+ natural killer cells, or B220+ B cells. Adoptive transfer of the induced γδT cells to leukemia‐bearing mice significantly reduced tumour growth and prolonged mouse survival with no obvious side effects, such as tumorigenesis and autoimmune diseases. This new method suggests that it could also be used to produce human γδT cells for clinical applications.  相似文献   
989.
摘要 目的:探讨自体骨髓单个核细胞(bone marrow mononuclear cells,BM-MNC)植入治疗血管生成对硬皮病严重肢体缺血的影响。方法:收集我院2018年6月-2021年1月收治的腔隙性脑梗死(cerebral lacunar infarction,CLI)伴系统性硬皮病患者(systemic sclerosis,SSc)患者60例,根据患者治疗意愿区分为研究组(接受BM-MNC治疗,30例)与对照组(接受常规保守治疗,30例),对比两组患者干预后疼痛度、跛行距离、踝肱指数(ankle brachial index,ABI)、经皮氧分压以及不良反应的发生情况。结果:治疗前两组患者的VAS评分、跛行距离组间差异无统计学意义(P>0.05),治疗1个月时两组患者的VAS评分均较治疗前均降低,跛行距离均延长,组间差异明显(P<0.05),治疗6个月时比较显示研究组VAS评分明显低于对照组,跛行距离明显高于对照组(P<0.05)。治疗前两组患者的ABI、经皮氧分压差异无统计学意义(P>0.05),治疗1个月时两组患者的ABI、经皮氧分压均较治疗前升高(P<0.05),组间差异明显(P<0.05),治疗6个月时比较显示研究组ABI和经皮氧分压明显高于对照组(P<0.05)。研究组治疗6个月期间出现中风1例,肝肾功异常2例,不良反应总发生率为6.00 %,对照组治疗6个月期间出现非致命性心肌梗死1例,中风1例,肝肾功能异常3例,不良反应总发生率10.00 %,两组间不良反应发生率比较差异无统计学意义(P>0.05)。结论:对CLI伴发SSc患者实施自体骨髓衍生单核细胞植入治疗可行性较好,能够显著改善患者的肢体功能及患肢血运,同时治疗安全性较高,值得临床推广应用。  相似文献   
990.
Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone‐marrow‐derived mesenchymal stem cells (BMSCs) on combined acid plus small non‐acidified particle (CASP)‐induced aspiration lung injury. Enhanced green fluorescent protein (EGFP+) or EGFP? BMSCs or 15d‐PGJ2 were injected via the tail vein into rats immediately after CASP‐induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone‐marrow‐derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP‐induced lung injury. Bone‐marrow‐derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor‐α and Cytokine‐induced neutrophil chemoattractant (CINC)‐1 and the expression of p‐p65 and increased the levels of interleukin‐10 and 15d‐PGJ2 and the expression of peroxisome proliferator‐activated receptor (PPAR)‐γ in the lung tissue in CASP‐induced rats. Tumour necrosis factor‐α stimulated BMSCs to secrete 15d‐PGJ2. A tracking experiment showed that EGFP+ BMSCs were able to migrate to local lung tissues. Treatment with 15d‐PGJ2 also significantly inhibited CASP‐induced lung inflammation and the production of pro‐inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC‐derived 15d‐PGJ2 activation of the PPAR‐γ receptor, reducing the production of proinflammatory cytokines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号