首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3719篇
  免费   362篇
  国内免费   108篇
  4189篇
  2024年   14篇
  2023年   61篇
  2022年   86篇
  2021年   177篇
  2020年   162篇
  2019年   242篇
  2018年   214篇
  2017年   136篇
  2016年   89篇
  2015年   147篇
  2014年   271篇
  2013年   363篇
  2012年   166篇
  2011年   187篇
  2010年   165篇
  2009年   141篇
  2008年   162篇
  2007年   165篇
  2006年   144篇
  2005年   126篇
  2004年   103篇
  2003年   100篇
  2002年   99篇
  2001年   81篇
  2000年   52篇
  1999年   55篇
  1998年   47篇
  1997年   53篇
  1996年   39篇
  1995年   28篇
  1994年   56篇
  1993年   31篇
  1992年   28篇
  1991年   27篇
  1990年   9篇
  1989年   12篇
  1988年   14篇
  1987年   12篇
  1986年   14篇
  1985年   22篇
  1984年   21篇
  1983年   11篇
  1982年   9篇
  1981年   4篇
  1980年   8篇
  1979年   8篇
  1978年   7篇
  1976年   6篇
  1975年   4篇
  1974年   4篇
排序方式: 共有4189条查询结果,搜索用时 0 毫秒
171.
Primary cilium—is it an osteocyte's strain‐sensing flowmeter?   总被引:2,自引:0,他引:2  
With few exceptions, the non-cycling cells in a vast range of animals including humans have a non-motile primary cilium that extends from the mother centriole of the pair of centrioles in their centrosomes located between their Golgi apparatuses and nuclei. It has very recently been shown that the primary cilium of a dog or a mouse embryonic kidney cell is a fluid flowmeter studded with heterodimeric complexes of mechanoreceptors linked to Ca(2+)-permeable cation channels that when the cilium is bent can send Ca(2+) signals into the cell and beyond to neighboring cells through gap junctions. More than 30 years ago, osteocytes were reported also to have primary cilia, but this was promptly ignored or forgotten. Osteocytes are the bones' strain sensors, which measure skeletal activity from the effects of currents of extracellular fluid caused by their bones being bent and squeezed during various activities such as walking and running. Since bending a kidney cell's primary cilium can send a Ca(2+) wave surging through itself and its neighbors, the bending of an osteocyte's primary cilium by sloshing extracellular fluid is likely to do the same thing and thus be involved in measuring and responding to bone strain.  相似文献   
172.
Although acute alterations in Ca2+ fluxes may mediate the skeletal responses to certain humoral agents, the processes subserving those fluxes are not well understood. We have sought evidence for Ca2+-dependent ATPase activity in isolated osteoblast-like cells maintained in primary culture. Two Ca2+-dependent ATPase components were found in a plasma membrane fraction: a high affinity component (half-saturation constant for Ca2+ of 280 nM, Vmax of 13.5 nmol/mg per min) and a low affinity component, which was in reality a divalent cation ATPase, since Mg2+ could replace Ca2+ without loss of activity. The high affinity component exhibited a pH optimum of 7.2 and required Mg2+ for full activity. It was unaffected by potassium or sodium chloride, ouabain or sodium azide, but was inhibited by lanthanum and by the calmodulin antagonist trifluoperazine. This component was prevalent in a subcellular fraction which was also enriched in 5′-nucleotidase and adenylate cyclase activities, suggesting the plasma membrane as its principal location. Osteosarcoma cells, known to resemble osteoblasts in their biological characteristics and responses to bone-seeking hormones, contained similar ATPase activities. Inclusion of purified calmodulin in the assay system caused small non-reproducible increases in the Ca2+-dependent ATPase activity of EGTA-washed membranes. Marked, consistent calmodulin stimulation was demonstrated in membranes exposed previously to trifluoperazine and then washed in trifluoperazine-free buffer. These results indicate the presence of a high affinity, calmodulin-sensitive Ca2+-dependent ATPase in osteoblast-like bone cells. As one determinant of Ca2+ fluxes in bone cells, this enzyme may participate in the hormonal regulation of bone cell function.  相似文献   
173.
《Cell》2022,185(10):1709-1727.e18
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   
174.
175.
The potential clinical and economic impact of mesenchymal stem cell (MSC) therapy is immense. MSCs act through multiple pathways: (1) as “trophic” cells, secreting various factors that are immunomodulatory, anti-inflammatory, anti-apoptotic, proangiogenic, proliferative, and chemoattractive; (2) in conjunction with cells native to the tissue they reside in to enhance differentiation of surrounding cells to facilitate tissue regrowth. Researchers have developed methods for the extraction and expansion of MSCs from animal and human tissues. While many sources of MSCs exist, including adipose tissue and iliac crest bone graft, compact bone (CB) MSCs have shown great potential for use in orthopaedic surgery. CB MSCs exert powerful immunomodulatory effects in addition to demonstrating excellent regenerative capacity for use in filling boney defects. CB MSCs have been shown to have enhanced response to hypoxic conditions when compared with other forms of MSCs. More work is needed to continue to characterize the potential applications for CB MSCs in orthopaedic trauma.  相似文献   
176.
Craniofacial development involves cranial neural crest (CNC) and mesoderm-derived cells. TGF-beta signaling plays a critical role in instructing CNC cells to form the craniofacial skeleton. However, it is not known how TGF-beta signaling regulates the fate of mesoderm-derived cells during craniofacial development. In this study, we show that occipital somites contribute to the caudal region of mammalian skull development. Conditional inactivation of Tgfbr2 in mesoderm-derived cells results in defects of the supraoccipital bone with meningoencephalocele and discontinuity of the neural arch of the C1 vertebra. At the cellular level, loss of TGF-beta signaling causes decreased chondrocyte proliferation and premature differentiation of cartilage to bone. Expression of Msx2, a critical factor in the formation of the dorsoventral axis, is diminished in the Tgfbr2 mutant. Significantly, overexpression of Msx2 in Myf5-Cre;Tgfbr2flox/flox mice partially rescues supraoccipital bone development. These results suggest that the TGF-beta/Msx2 signaling cascade is critical for development of the caudal region of the skull.  相似文献   
177.
Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell differentiation in vitro and bone regeneration in vivo. It may be possible to improve healing of bone defects in humans using stem cells from bone marrow.  相似文献   
178.
《Biomarkers》2013,18(7):616-628
A competitive enzyme-linked immunosorbent assay (ELISA) for detection of a type I collagen fragment generated by matrix metalloproteinases (MMP) -2, -9 and -13, was developed (CO1-764 or C1M). The biomarker was evaluated in two preclinical rat models of liver fibrosis: bile duct ligation (BDL) and carbon tetra chloride (CCL4)-treated rats. The assay was further evaluated in a clinical study of prostate-, lung- and breast-cancer patients stratified according to skeletal metastases. A technically robust ELISA assay specific for a MMP-2, -9 and -13 neo-epitope was produced and seen to be statistically elevated in BDL rats compared to baseline levels as well as significantly elevated in CCL4 rats stratified according to the amount of total collagen in the livers. CO1-764 levels also correlated significantly with total liver collagen and type I collagen mRNA expression in the livers. Finally, the CO1-764 marker was not correlated with skeletal involvement or number of bone metastases. This ELISA has the potential to assess the degree of liver fibrosis in a non-invasive manner.  相似文献   
179.
180.
造血细胞活力冷冻损伤的可恢复性   总被引:1,自引:0,他引:1  
人骨髓冻存后其造血祖细胞活力有一定程度下降,本研究对这种下降的可逆性作了初步观察。结果发现,用双层法和单层法作CFU-GM培养时,未冻存骨髓集落产率相近,冻存骨髓双层法的CFU-GM产率高于单层法。骨髓细胞用20%FM-CM、PHA-LYCM、PHA-PMCM预孵育2h后,分别测定其CFU-GM、BFU-E与CFU-Mix,发现这种孵育过程对未冻存骨髓的集落产率无明显影响,而冻存骨髓的集落产率在孵育后可升高(GEMmeg除外)。说明骨髓造血祖细胞对冻存的损伤反应不均一,部分受损细胞在一定条件下可以恢复其增殖活力。这对于用冻存骨髓作骨髓移植可能有一定意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号