全文获取类型
收费全文 | 143篇 |
免费 | 8篇 |
国内免费 | 2篇 |
专业分类
153篇 |
出版年
2022年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 2篇 |
2012年 | 1篇 |
2011年 | 4篇 |
2010年 | 3篇 |
2009年 | 6篇 |
2008年 | 5篇 |
2007年 | 6篇 |
2006年 | 10篇 |
2005年 | 10篇 |
2004年 | 5篇 |
2003年 | 4篇 |
2002年 | 6篇 |
2001年 | 4篇 |
2000年 | 9篇 |
1999年 | 9篇 |
1998年 | 8篇 |
1997年 | 12篇 |
1996年 | 7篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1993年 | 7篇 |
1992年 | 4篇 |
1991年 | 4篇 |
1990年 | 5篇 |
1989年 | 7篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1974年 | 2篇 |
排序方式: 共有153条查询结果,搜索用时 31 毫秒
41.
Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions 总被引:1,自引:0,他引:1
The allocation of resources among roots and shoots represents the largest flux of resources within a plant and therefore should have been selected to maximize benefits to plants. Yet, it is unclear why some species like temperate grasses have such high root length density (RLD). Either the slow rate of diffusion of inorganic N in soils or interplant competition could explain the high RLD of temperate grasses. Using a fine-scale model of nutrient dynamics in the soil and plant growth, a cost–benefit approach was used to assess optimal allocation rates for plants that accounted for value of both carbon and nitrogen. In the absence of interplant competition, resource benefits are maximized with very little root length except in extremely dry soils for ammonium. In the presence of a competitor, optimal allocation of N to roots is much greater and increases as ability of competitors to produce root length increase. Competition for inorganic nitrogen generates a classic aspect of the tragedy of the commons, the “race for fish”, where plants must allocate more resources to acquisition of the limiting resource than is optimal for plants in the absence of competition. As such, nutrient competition needs to be directly addressed when understanding plant- and ecosystem-level resource fluxes as well as the evolution of root systems. 相似文献
42.
The concentrations of free amino acids (AA) and polyphenols (PP) are important determinants of green tea quality. Levels of AA and PP are governed interactively by nitrogen (N) supply and carbon (C) status, so the impact of C/N allocation on green tea quality was investigated in saplings cultivated hydroponically with 0.3, 0.75, 1.5 or 4.5 mmol l?1 N. Activities of glutamine synthetase (GS), phenylalanine ammonia lyase (PAL), and phosphoenolpyruvate carboxylase (PEPC) were determined, as were concentrations of AA, PP and soluble sugars. Concentrations of AA increased with increasing N supply, and the AA profile was shifted towards AA characterised by low C/N ratios (arginine, glutamine) and away from theanine, the unique non‐protein AA that is abundant in Camellia sinensis. High N supply significantly reduced the concentrations of PP in young shoots, and was accompanied by lower levels of carbohydrates (soluble sugars). Analysis of the C and N status and selected enzyme activities, combined with path coefficient analysis of variables associated with C and N metabolism, demonstrated increasing deviation of C flux to AA under abundant N supply. Accumulation of AA and PP depended strongly on N status, and the balance shifted toward increasing synthesis of AA associated with enhanced growth, while investment of C in secondary metabolites did not change proportionally under the condition of ample N supply. 相似文献
43.
The functional morphology of light capture and carbon gain in the Redwood forest understorey plant Adenocaulon bicolor Hook 总被引:2,自引:0,他引:2
1. A three-dimensional geometric simulation model of crown architecture was utilized to investigate the efficiency of light capture and its relationship to whole-plant CO2 assimilation of Adenocaulon bicolor .
2. Positioning of the leaves by the combined effects of ontogenetic variations in petiole length and angle and leaf size, and the leaf divergence angles were shown to be effective in minimizing self shading. The efficiency of light absorption varied from 0·64 to 0·70 among individual plants that were sampled.
3. Plant to plant variation in simulated daily carbon gain was strongly influenced by variations in the direct and diffuse PFD received by the individual plants. When simulations were run for all plants under a single common light environment, the carbon gain was strongly dependent on the efficiencies of light absorption of the different plants.
4. Simulations in which petiole length was varied showed a non-linear dependence of light absorption efficiency on petiole length. When both petiole length and leaf size were varied in a way that maintained a constant biomass then an optimal petiole length that corresponded to the observed petiole length was apparent. The observed divergence angle between successive leaves also maximized light absorption efficiency as compared to greater or lesser angles, but increases in internode length had no significant effect.
5. The results of this study provide evidence for selection for an 'optimal design' of crown architecture in Adenocaulon bicolor that maximizes light capture. 相似文献
2. Positioning of the leaves by the combined effects of ontogenetic variations in petiole length and angle and leaf size, and the leaf divergence angles were shown to be effective in minimizing self shading. The efficiency of light absorption varied from 0·64 to 0·70 among individual plants that were sampled.
3. Plant to plant variation in simulated daily carbon gain was strongly influenced by variations in the direct and diffuse PFD received by the individual plants. When simulations were run for all plants under a single common light environment, the carbon gain was strongly dependent on the efficiencies of light absorption of the different plants.
4. Simulations in which petiole length was varied showed a non-linear dependence of light absorption efficiency on petiole length. When both petiole length and leaf size were varied in a way that maintained a constant biomass then an optimal petiole length that corresponded to the observed petiole length was apparent. The observed divergence angle between successive leaves also maximized light absorption efficiency as compared to greater or lesser angles, but increases in internode length had no significant effect.
5. The results of this study provide evidence for selection for an 'optimal design' of crown architecture in Adenocaulon bicolor that maximizes light capture. 相似文献
44.
45.
Which is the most appropriate currency (biomass, energy, water, or some mineral nutrient) for expressing resource allocation in plants has been repeatedly discussed. Researchers need to assess to which extent interindividual, interpopulational, or interspecific comparisons of resource allocation could be affected by the allocation currency chosen. The "currency issue" is relevant to at least three related aspects of resource allocation to reproduction: (a) reproductive allocation (RA), (b) size-dependence of reproductive allocation, and (c) somatic cost of reproduction (SCR). Empirical tests have mostly dealt with the first aspect only. We examined the equivalence of estimates for the three aspects above across three different allocation currencies (dry mass, N, P) in 11 populations of PINGUICULA VULGARIS. For RA we studied the equivalence of allocation currencies at three scales: among individuals of the same population, between populations of the same species, and among species. Equivalence of currencies in the ranking of RA for individuals within populations was high ( RS >/= 0.43) and did not strongly decrease when comparing populations or species. Excepting for size-dependence of RA, ranking of RA, or SCR between populations was equivalent for biomass and N, but not for P. Our study gives two positive guidelines for empirical plant reproductive ecologists facing the "currency issue": (1) become increasingly concerned about the "currency issue" as you increase the scale of your comparison from individuals to populations to species, and (2) avoid estimating allocation in redundant currencies (biomass and N in our case) and choose preferentially "complementary" currencies that provide a broader view of allocation patterns (biomass and P in our case). 相似文献
46.
Pattern and process in above-ground and below-ground components of grassland ecosystems 总被引:1,自引:0,他引:1
Abstract. This paper describes patterns of below-ground components in grassland ecosystems. It provides estimates of the contribution of below-ground organs to the total phytomass of the community and of different species to the below-ground phytomass; it describes the distribution of above- and below- ground organs of different species and the spatial and temporal correlation between above-ground and below-ground phyto-mass – both total standing crop and net primary production. 10 Siberian grasslands (meadows and steppes) were investigated during 15 yr. Ca. 70 % of the living phytomass is located in the soil and no less than 70 % of the net primary production is allocated in below-ground organs. Phytomass distribution in the soil layer is more homogeneous than above-ground. For some species the spatial distribution within 1-m2 plots of the green and below-ground phytomass is similar, for others it is quantitatively or qualitatively different. According to the dominance-diversity curve, the above-ground size hierarchy is much stronger than the below-ground one. The active growth of above- and below-ground organs of a species may occur at different times of the season and it varies from year to year. Allocation of organic substances to rhizomes and roots occurs simultaneously and with proportional intensity. 相似文献
47.
The possibility of modulating shoot growth charaeteristics of seedlings of two inbred lines of Plantago major L., differing in relative growth rate (RGR), by exogenously applied 6-benzylaminopurine (BA), α-naphthalene acetic acid (NAA), (gibberellic acid (GA3 ) and (2-chloroethyl)-trimethyl-ammonium chloride (CCC) was investigated. BA completely inhibited growth of the shoot at a concentration of 1 m M , while lower concentrations had no effect. NAA reduced growth of the shoot at 10 ü M , while 1 m M completely inhibited growth. Addition of 10 μ M GA3 or higher stimulated shoot fresh weight up to 20% and leaf area up to 30% for the slow growing inbred line (W9), but less for the fast growing line (A4). Application of 1 m M CCC, an inhibitor of gibberellin metabolism, reduced growth of both inbred lines, but to a larger extent in the fast growing seedlings.
The lower shoot growth of W9 was associated with a lower specific leaf area (SLA) and a higher dry matter percentage of the shoot, as compared with A4. NAA reduced growth by reducing SLA and increasing leaf thickness, but the percentage dry matter of the leaves was unaffected. Stimulation of the shoot growth by GA3 application was associated with higher SLA and lower dry matter percentage. Application of CCC had opposite effects on SLA and dry matter percentage as compared with GA3 . GA seems to be involved in the regulation of at least part of the genetic difference in RGR in Plantago major . 相似文献
The lower shoot growth of W9 was associated with a lower specific leaf area (SLA) and a higher dry matter percentage of the shoot, as compared with A4. NAA reduced growth by reducing SLA and increasing leaf thickness, but the percentage dry matter of the leaves was unaffected. Stimulation of the shoot growth by GA
48.
49.
Phyllostachys pubescens Mazel ex Houzeau de Lehaie is one of the largest bamboo species with a leptomorph root system in the world. The species originates in China and has been naturalized in the neighboring countries. It was introduced in 1746 into Japan because of the economic value of the young sprouts and culm woods. It escaped from the planted areas and expanded by invading the original vegetation. In order to clarify the basic ecological characteristics of the species, carbon fixation and cycling were determined in a stand of Phyllostachys pubescens. The standing culm density and average DBH in 1991 were 7100 ha(-1) and 11.3 cm, respectively. The above-ground biomass was 116.5 t ha(-1) for culms, 15.5 t ha(-1) for branches, 5.9 t ha(-1) for leaves and 137.9 t ha(-1) in total. The total above-ground biomass was one of the largest among the world's bamboo communities. The biomasses of rhizomes and fine roots were 16.7 t ha(-1) and 27.9 t ha(-1), respectively. Annual soil respiration was 52.3 t CO(2) ha(-1) yr(-1), the highest among those determined in Japan. The gross production was high: 32.8 t C ha(-1) yr(-1). Allocation of the products to its root system was also high: 34% to gross production and 46% to the fluxes out of the leaves into other compartments of the ecosystem. This resulted in the reduced above-ground net production of 18.1 t ha(-1) yr(-1), which fell within the average range of productivity of forests under similar climate conditions. This paper discusses the correspondence of the allocation pattern with the successful range expansion. 相似文献
50.
Summary Ecological trade-offs between growth, reproduction and both condensed tannins and cyanogenic glycosides were examined in Lotus corniculatus by correlating shoot (leaves and stem) size and reproductive output with chemical concentrations. We found that cyanide concentration was not related to shoot size, but that condensed tannin concentrations were positively correlated with shoot size; larger plants contained higher tannin concentrations. Both tannin and cyanide concentrations were depressed when plants produced fruits. Defense costs change as plants mature and begin to reproduce. These trade-offs indicate that cost of defense chemical production cannot be predicted merely on the basis of molecular size, composition or concentration. 相似文献