首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3487篇
  免费   142篇
  国内免费   17篇
  2024年   8篇
  2023年   27篇
  2022年   45篇
  2021年   60篇
  2020年   61篇
  2019年   86篇
  2018年   60篇
  2017年   55篇
  2016年   55篇
  2015年   65篇
  2014年   135篇
  2013年   171篇
  2012年   113篇
  2011年   175篇
  2010年   84篇
  2009年   139篇
  2008年   172篇
  2007年   159篇
  2006年   146篇
  2005年   79篇
  2004年   102篇
  2003年   66篇
  2002年   39篇
  2001年   41篇
  2000年   58篇
  1999年   57篇
  1998年   67篇
  1997年   56篇
  1996年   53篇
  1995年   72篇
  1994年   79篇
  1993年   57篇
  1992年   84篇
  1991年   82篇
  1990年   64篇
  1989年   73篇
  1988年   69篇
  1987年   69篇
  1986年   65篇
  1985年   82篇
  1984年   78篇
  1983年   65篇
  1982年   87篇
  1981年   77篇
  1980年   50篇
  1976年   9篇
  1974年   6篇
  1973年   7篇
  1972年   11篇
  1970年   6篇
排序方式: 共有3646条查询结果,搜索用时 31 毫秒
101.
We studied the hexose transporter protein of the frontal and temporal neocortex, hippocampus, putamen, cerebellum, and cerebral microvessels (which constitute the blood-brain barrier) in Alzheimer disease and control subjects by reversible and covalent binding with [3H]cytochalasin B and by immunological reactivity. In Alzheimer disease subjects, we found a marked decrease in the hexose transporter in brain microvessels and in the cerebral neocortex and hippocampus, regions that are most affected in Alzheimer disease, but there were no abnormalities in the putamen or cerebellum. Hexose transporter reduction in cerebral microvessels of Alzheimer subjects is relatively specific because other enzyme markers of brain endothelium were not significantly altered. The low density of the hexose transporter at the blood-brain barrier and in the cerebral cortex in Alzheimer disease may be related to decreased in vivo measurements of cerebral oxidative metabolism.  相似文献   
102.
In the present study, we characterized the distribution and the pharmacological properties of the different components of the GABAA receptor complex in the brain of the eel (Anguilla anguilla). Benzodiazepine recognition sites labeled "in vitro" with [3H]flunitrazepam ([3H]FNT) were present in highest concentration in the optic lobe and in lowest concentration in the medulla oblongata and spinal cord. A similar distribution was observed in the density of gamma-[3H]aminobutyric acid ([3H]GABA) binding sites. GABA increased the binding of [3H]FNT in a concentration-dependent manner, with a maximal enhancement of 45% above the control value, and, vice versa, diazepam stimulated the binding of [3H]GABA to eel brain membrane preparations. The density of benzodiazepine and GABA recognition sites and their reciprocal regulation were similar to those observed in the rat brain. In contrast, the binding of the specific ligand for the Cl- ionophore, t-[35S]butylbicyclophosphorothionate ([35S]TBPS), to eel brain membranes was lower than that found in the rat brain. In addition, [35S]TBPS binding in eel brain was less sensitive to the inhibitory effects of GABA and muscimol and much more sensitive to the stimulatory effect of bicuculline, when compared with [35S]TBPS binding in the rat brain. Moreover, the uptake of 36Cl- into eel brain membrane vesicles was only marginally stimulated by concentrations of GABA or muscimol that significantly enhanced the 36Cl- uptake into rat brain membrane vesicles. Finally, intravenous administration of the beta-carboline inverse agonist 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methyl ester (20 mg/kg) and of the chloride channel blocker pentylenetetrazole (80 mg/kg) produced convulsions in eels that were antagonized by diazepam at doses five to 20 times higher than those required to produce similar effects in rats. The results may indicate a different functional activity of the GABA-coupled chloride ionophore in the fish brain as compared with the mammalian brain.  相似文献   
103.
We have investigated the localization of atrial natriuretic factor (ANF)-like immunoreactivity in the central nervous system of the cartilaginous fish, Scyliorhinus canicula, using the indirect immunofluorescence technique. Immunoreactive perikarya and fibers were observed in two regions of the telencephalon, the area superficialis basalis and the area periventricularis ventrolateralis. In the diencephalon, the hypothalamus exhibited a moderate number of ANF-containing neurons and fibers located in the preoptic and periventricular nuclei and in the nucleus lateralis tuberis. The most important group of ANF-immunoreactive cells was observed in the nucleus tuberculi posterioris of the diencephalon. In contrast, the mesencephalon showed only a few ANF-positive nerve processes located in the tegmentum mesencephali. Numerous fine fibers and nerve terminals were found in the dorsal area of the neurointermediate lobe of the pituitary. These results provide the first evidence for the presence of ANF-related peptides in the brain of a cartilaginous fish. The widespread distribution of ANF-positive cells and fibers in the brain and pituitary suggests that this peptide may act both as a neurotransmitter and (or) a neurohormone in fish.  相似文献   
104.
Abstract: The mechanism of unidirectional transport of sodium from blood to brain in pentobarbital-anesthetized rats was examined using in situ perfusion. Sodium transport followed Michaelis-Menten saturation kinetics with a V max of 50.1 nmol/g/min and a K m of 17.7 m M in the left frontal cortex. The kinetic analysis indicated that, at a physiologic sodium concentration, ∼26% of sodium transport at the blood-brain barrier (BBB) was carrier mediated. Dimethylamiloride (25 µ M ), an inhibitor of Na+/H+ exchange, reduced sodium transport by 28%, whereas phenamil (25 µ M ), a sodium channel inhibitor, reduced the transfer constant for sodium by 22%. Bumetanide (250 µ M ) and hydrochlorothiazide (1.5 m M ), inhibitors of Na+-K+-2Cl/NaCl symport, were ineffective in reducing blood to brain sodium transport. Acetazolamide (0.25 m M ), an inhibitor of carbonic anhydrase, did not change sodium transport at the BBB. Finally, a perfusate pH of 7.0 or 7.8 or a perfusate P co 2 of 86 mm Hg failed to change sodium transport. These results indicate that 50% of transcellular transport of sodium from blood to brain occurs through Na+/H+ exchange and a sodium channel in the luminal membrane of the BBB. We propose that the sodium transport systems at the luminal membrane of the BBB, in conjunction with Cl/HCO3 exchange, lead to net NaCl secretion and obligate water transport into the brain.  相似文献   
105.
Abstract: S -Adenosylmethionine is an essential ubiquitous metabolite central to many biochemical pathways, including transmethylation and polyamine biosynthesis. Reduced CSF S -adenosylmethionine levels in Alzheimer's disease have been reported; however, no information is available regarding the status of S -adenosylmethionine or S -adenosylmethionine-dependent methylation in the brain of patients with this disorder. S -Adenosylmethionine concentrations were measured in postmortem brain of 11 patients with Alzheimer's disease. We found decreased levels of S -adenosylmethionine (−67 to −85%) and its demethylated product S -adenosylhomocysteine (−56 to −79%) in all brain areas examined (cerebral cortical subdivisions, hippocampus, and putamen) as compared with matched controls (n = 14). S -Adenosylmethionine and S -adenosylhomocysteine levels were normal in occipital cortex of patients with idiopathic Parkinson's disease (n = 10), suggesting that the decreased S -adenosylmethionine levels in Alzheimer's disease are not simply a consequence of a chronic, neurodegenerative condition. Reduced S -adenosylmethionine levels could be due to excessive utilization in polyamine biosynthesis. The severe reduction in levels of this essential biochemical substrate would be expected to compromise seriously metabolism and brain function in patients with Alzheimer's disease and may provide the basis for the observations of improved cognition in some Alzheimer's patients following S -adenosylmethionine therapy.  相似文献   
106.
Abstract: [3H]Ryanodine binding to, as well as functions of, ryanodine receptor intracellular Ca2+ release channel complexes are modulated by several adenosine-based compounds. In this study, we determined the effects of endogenous compounds termed diadenosine polyphosphates (ApnAs; n = 2–6 phosphate groups) on [3H]ryanodine binding to membranes prepared from rat brain and skeletal and cardiac muscle. Under low ionic strength buffer conditions, [3H]ryanodine binding to brain membranes was significantly increased by 171% with 333 µMP1,P5-di(adenosine-5′) pentaphosphate (Ap5A) and by 209% with the same concentration of the metabolism-resistant ATP analogue βγ-methyleneadenosine 5′-triphosphate (AMP-PCP) compared with control values for [3H]ryanodine binding of 9.6 ± 1.8 fmol/mg of protein. Dose-related increases in [3H]ryanodine binding were observed for all five ApnAs tested [P1,P2-di(adenosine-5′) pyrophosphate (Ap2A), P1,P3-di(adenosine-5′) triphosphate (Ap3A), P1,P4-di(adenosine-5′) tetraphosphate (Ap4A), Ap5A, and P1,P6-di(adenosine-5′) hexaphosphate (Ap6A)] as well as AMP-PCP; oxidized salts of ApnAs stimulated [3H]ryanodine binding to a greater degree than did nonoxidized ApnAs. The apparent rank order for the capacity of these agents to increase [3H]-ryanodine binding was oxidized Ap4A = oxidized Ap5A > oxidized Ap3A > Ap6A > AMP-PCP > Ap5A > Ap2A. Addition of the approximate EC50 dose of oxidized Ap4A (37 µM) increased the affinity (KD) of ryanodine receptors from 34 ± 7 to 12 ± 2 nM; the apparent binding site density (Bmax) was not significantly different from control values of 107 ± 33 fmol/mg of protein. Increases in [3H]-ryanodine binding by either oxidized Ap4A or nonoxidized Ap5A were not further enhanced by coincubation with AMP-PCP, which suggests a similar site of action for the ApnAs and AMP-PCP. [3H]Ryanodine binding to skeletal and cardiac muscle membranes was enhanced by addition of oxidized Ap4A, Ap5A, and AMP-PCP. Oxidized Ap4A increased the specific binding by ninefold in skeletal muscle and by threefold in cardiac muscle. These results suggest that ApnAs, at physiologically relevant concentrations, may serve as endogenous modulators of ryanodine receptor-gated Ca2+ release channels.  相似文献   
107.
Abstract: A readily soluble 5'-nucleotidase was purified 1,800-fold from rat brain 105,000- g supernatant. The enzyme showed similarity to the 5'-nucleotidase ectoenzyme of plasma membranes. It exhibited a low K m for AMP, which was preferred over IMP as substrate. It was inhibited by free ATP and ADP and by α,β-methylene ADP. The enzyme appeared to be a glycoprotein on the basis of its interaction with concanavalin A. It contained a phosphatidylinositol moiety because treatment with phosphatidylinositol-specific phospholipase C increased its hydrophilicity. A single subunit of Mr = 54,300 ± 800 was observed, which is appreciably smaller than published values for the 5'-nucleotidase ectoenzyme or for other low- K m"soluble" 5'-nucleotidases. The soluble 5'-nucleotidase showed an elution profile on AMP-Sepharose affinity chromatography or on Mono Q ion-exchange chromatography different from that of the brain ectoenzyme. Forty-two percent of the soluble 5'-nucleotidase in brain 105,000- g supernatant did not bind to a Mono Q ion-exchange column because of its interaction with a soluble factor. This factor could be removed by chromatography on concanavalin A-Sepharose. The factor had the novel property of increasing the sensitivity of the purified soluble 5'-nucleotidase toward the inhibitor ATP by 20-fold. This factor was also able to increase the inhibition of brain 5'-nucleotidase ectoenzyme by ATP.  相似文献   
108.
Abstract: The tissue distribution of neurotrophin-3 (NT-3) was investigated in rats at 1 month of age using a newly established, sensitive two-site enzyme immunoassay system for NT-3, as well as the immunocytochemical localization of this protein. The immunoassay for NT-3 enabled us to quantify NT-3 at levels > 3 pg per assay. In the rat brain, NT-3 was detectable only in the olfactory bulb (0.54 ng/g wet weight), cerebellum (0.71 ng/g), septum (0.91 ng/g), and hippocampus (6.3 ng/g). By contrast, NT-3 was widely distributed in peripheral tissues. Appreciable levels of NT-3 were also found in the thymus (31 ng/g), heart (38 ng/g), diaphragm (21 ng/g), liver (45 ng/g), pancreas (892 ng/g), spleen (133 ng/g), kidney (40 ng/g), and adrenal gland (46 ng/g). An antibody specific for NT-3 bound to pyramidal cells in the CA2-CA4 regions of the hippocampus, to A cells in the islets of Langerhans in the pancreas, to unidentified cells in the red pulp of the spleen, to liver cells, and to muscle fibers in the diaphragm from rats at 1 month of age. Molecular masses of NT-3-immunoreactive proteins in the hippocampus and pancreas were 14 and 12 kDa, respectively. Thus, in rats, NT-3 was detected in restricted regions of the brain and in the visceral targets of the nodose ganglia at high concentrations. Our present results suggest that NT-3 not only functions as a classical target-derived neurotrophic factor but also can play other roles.  相似文献   
109.
Abstract: 3,4-Dihydroxyphenylacetic acid (DOPAC) is commonly considered to be the main dopamine (DA) metabolite produced by monoamine oxidase (MAO); however, the initial product of DA oxidation is 3,4-dihydroxyphenylacetaldehyde (DOPALD). Owing to technical difficulties in detecting DOPALD from a biological matrix, no studies have so far been performed to measure brain levels of this aldehyde in vivo. In this work, using transstriatal microdialysis in freely moving rats, we identified DOPALD by HPLC coupled to a coulometric detector. In chromatograms obtained from microdialysis samples, DOPALD appeared as a peak with a retention time coincident with that of the standards obtained via enzymatic and chemical synthesis. On the other hand, DOPALD was undetectable ex vivo from rat striatal homogenates. This discrepancy is probably due to the preferential extraneuronal localization together with the high reactivity of the aldehyde, which is rapidly removed by the dialysis probe, whereas the ex vivo procedure allows its condensation and enzymatic conversion. Measurement of DOPALD levels as a routine procedure might represent a reliable tool to evaluate DA oxidative metabolism directly, in vivo. Moreover, parallel detection of DOPALD and DOPAC levels in brain dialysate may make it possible to distinguish between the activity of MAO and aldehyde dehydrogenase. DOPALD, like many endogenous aldehydes, has been shown to be toxic to the cell in which it is formed. Therefore, in vivo measurement of DOPALD levels could highlight new aspects in the molecular mechanisms underlying both acute neurological insults and neurodegenerative diseases.  相似文献   
110.
Abstract: The neutral and phospholipid composition of mouse brain infected with scrapie prions was investigated. During the later stages of this disease, the level of dolichol decreased by 30% whereas the level of dolichyl phosphate increased by 30%. In terminally ill mice, there was also a 2.5-fold increase in both total ubiquinone and its reduced form. Furthermore, α-tocopherol was elevated at this stage by 50%. In contrast, no changes were observed in phospholipid amount, in phospholipid composition, and in phosphatidylethanolamine plasmalogen content during the entire disease process. The fatty acid and aldehyde composition of individual phospholipids remained unaltered as well. No modifications could be detected in cholesterol content. Thus, the majority of membrane lipids in scrapie-infected mouse brain are modified in neither quantity nor structure, but specific changes occur to a few polyisoprenoid lipids. This specificity indicates that, although prions accumulate in lysosomes, the infection process is not associated with a general membrane destruction caused by lysosomal enzyme leakage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号