首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3996篇
  免费   131篇
  国内免费   183篇
  2023年   35篇
  2022年   60篇
  2021年   58篇
  2020年   59篇
  2019年   98篇
  2018年   113篇
  2017年   61篇
  2016年   59篇
  2015年   71篇
  2014年   206篇
  2013年   268篇
  2012年   164篇
  2011年   240篇
  2010年   141篇
  2009年   165篇
  2008年   158篇
  2007年   227篇
  2006年   180篇
  2005年   201篇
  2004年   125篇
  2003年   150篇
  2002年   126篇
  2001年   93篇
  2000年   84篇
  1999年   84篇
  1998年   99篇
  1997年   87篇
  1996年   89篇
  1995年   85篇
  1994年   68篇
  1993年   63篇
  1992年   45篇
  1991年   38篇
  1990年   41篇
  1989年   41篇
  1988年   30篇
  1987年   32篇
  1986年   31篇
  1985年   36篇
  1984年   51篇
  1983年   41篇
  1982年   30篇
  1981年   33篇
  1980年   24篇
  1979年   37篇
  1978年   18篇
  1977年   14篇
  1976年   14篇
  1975年   9篇
  1973年   9篇
排序方式: 共有4310条查询结果,搜索用时 15 毫秒
61.
Summary Caco-2 cell human colon adenocarcinoma cell line was used to study the hormonal regulation of small intestinal epithelial cell differentiation. We had previously shown that insulin-transferrin-selenium and triiodothyronine (5 × 10−8 M)-supplemented medium can best replace serum after 2 days of culture for both the maintenance and differentiation of Caco-2 cells. The present study demonstrates that precoating petri dishes with complete serum allows the growth and differentiation of Caco-2 cells seeded directly in serum-free medium. On the other hand, precoating with dialyzed serum inhibits alkaline phosphatase and dipeptidyl-dipeptidase IV activities by more than 50%. The results obtained with complete serum-precoated culture plates indicate that there is no synergy between insulin and triiodothyronine because cells maintained in transferrin-selenium and triiodothyronine-supplemented medium, with or without insulin, express comparable enzyme activities. Moreover, large increases in alkaline phosphatase and dipeptidyl-dipeptidase IV activities were observed when triiodothyronine was added to the culture medium by the time confluency was reached. In contrast, γ-glutamyltransferase was lowered to a greater extent when triiodothyronine was present from the beginning of culture. These findings show that triiodothyronine preferentially stimulates alkaline phosphatase and dipeptidyl-dipeptidase IV activities during the differentiation period whereas it selectively inhibits γ-glutamyltransferase during the proliferation phase. Triiodothyronine acts in a dose-dependent manner.  相似文献   
62.
The major intracellular protein tyrosine phosphatase (PTP1B) is a 50kDa protein, localized to the endoplasmic reticulum. This PTP is recovered in the particulate fraction of mamalian cells and can be solubilized as a complex of 150 kDa by extraction with non-ionic detergents. Previous work from this laboratory implicated phosphorylation of serine/threonine residues in the regulation of this PTP. Activity was several-fold higher in cells treated with activators of cAMP-dependent or Ca2+/phospholipid-dependent protein kinases or inhibitors of protein phosphatase 2A. Here we show that these treatments result in more than an 8-fold increase in the phosphorylation of the 50kDa PTP catalytic subunit within the 150kDa form of the phosphatase in HeLa cells. The phosphorylation occurred exclusively on serine residues, and the same tryptic and cyanogen bromide,32P-phosphopeptides were recovered in the PTP from control and stimulated cells. Either multiple kinases phosphorylate a common site in the PTP1B, or a single kinase is activated downstream of cAMP- and Ca2+/phospholipid-dependent kinases. The results indicate that phosphorylation of a serine residue in the segment 283–364, probably serine 352 in the sequence Lys-Gly-Ser-Pro-Leu, occurs in response to cell stimulation. Phosphorylation in this region of PTP1B, between the N-terminal catalytic domain and the C-terminal membrane localization segment, is proposed to regulate phosphatase activity.  相似文献   
63.
L. Donovani promastigotes were grown to late-log and 3-day stationary phase to determine the level of protein tyrosine phosphatase activity in crude extracts and in fractions following gel filtration column chromatography. Over 90% of the activity was soluble in a low salt extraction buffer in both phases of growth. Several peaks of activity were resolved following gel filtration of the crude extracts indicating that multiple tyrosine phosphatases are present in these cells. Tyrosine phosphatase activity was lower in 3-day stationary than in late log-phase cells and a reduction in the major peak of activity, eluting in a gel fraction corresponding to an M r of approximately 168kDa, was observed.In vivo tyrosine phosphorylation was revealed by Western blot analysis. The degree of phosphorylation of at least two proteins differed in cells obtained from late log phase cultures as compared with 3-day stationary phase cultures. These observations indicate that changes in the balance between tyrosine phosphorylation and dephosphorylation occur with increasing culture age.Abbreviations MBP myelin basic protein - PMSF phenyl-methanesulfonylfluoride - PTP protein tyrosine phosphatase - RCML reduced, carboxyamidomethylated, maleylated lysozyme - YINAS Tyr-Ile-Asn-Ala-Ser  相似文献   
64.
Tissue non-specific alkaline phosphatase is a membrane-bound glycoprotein enzyme which is characterized by its phosphohydrolytic, protein phosphatase, and phosphotransferase activities. This enzyme is distributed virtually in all mammalian tissues, particularly during embryonic development. Its expression is stagespecific and can be demonstrated in the developing embryo as early as the 2-cell stage. It has been suggested that tissue non-specific alkaline phosphatase might play a role in tissue formation. In the study reported here, a genetransfer approach was employed to investigate possible roles for this enzyme by inserting the cDNA for rat tissue non-specific alkaline phosphatase into CHO and LLC-PK1 cells. Permanently transfected cell-lines expressing varying levels of alkaline phosphatase were estblished. The data showed that functional enzyme was expressed in the transfected cells. Cell spreading and attachment were enhanced in transfected CHO cells expressing high levels of tissue non-specific alkaline phosphatase but not in the LLC-PK1 cells. Further, in CHO cells, proliferation was shown to be inversely proportional to the level of the tissue non-specific alkaline phosphatase expression. Homotypic cell association was demonstrated in both alkaline phosphatase-positive and alkaline phosphatase-negative cells in both CHO and LLC-PK1 celllines. Taken together, these findings suggest that in addition to a role in mineralization of bone, tissue nonspecific alkaline phosphatase might also play a role in other cell activities, including those related to differentiation, such as cell-cell or cell-substrate interaction and proliferation.  相似文献   
65.
The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase.Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V max values and apparent K m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme.Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified non-phosphorylated Entner-Doudoroff pathway.  相似文献   
66.
在地衣芽孢杆菌NCIB 6816菌株碱性蛋白酶基因已知序列的基础上,通过设计合适的引物,利用PCR(Polymerase Chain Reaction)技术从地衣芽孢杆菌2709菌株的柒色体DNA中扩增了2709碱性蛋白酶的编码序列。对两个克隆的PCR片段的全序列分析结果显示,2709碱性蛋白酶的编码序列同相应的NCIB 6816序列相比有3%左右的碱基组成差异。由此推定的2709碱性蛋白酶的氨基酸序列肯定了2709碱性蛋白酶属典型的subtilisin Carlsberg类,同时还表明来源于不同地衣芽孢杆菌菌株的subtilisin Carlsberg存在着若干氨基酸组成上的差异。  相似文献   
67.
Using cytochemical method,microspectrophotometry and image analysis,effects of va-soactive intestinal peptide(VIP)on activities of succinic dehydrogenase(SDH)and alkalinephosphatase(ALP)in rat hepatoma cells were studied in vitro.The results showed that thehepatoma cell expressed potent positive reactions of SDH and ALP,the positive positionswere located at the cell membranes and/or cytoplasm.Having been treated with VIP,ALPdecreased obviously in activity(P<0. 01,compared with hepatoma cells untreated by VIP).The sites of ALP activty were chiefly located at the cell membranes,particularly at the cell-cell contacts.Cultured rat hepatoma cells had intensive SDH activity in their cytoplasm.Compared with untreated eclls,there was no marked difference in the intensity of SDH activ-ity in VIP-treated hepatoma cells(P>0.05).  相似文献   
68.
69.
Acid phosphatase present in preparations ofAspergillus niger phytase accelerated dephosphorylation of sodium phytate. Its influence on the reaction rate and distribution ofmyo-inositol phosphates was most apparent at low pH value (2.5) and when acid-hydrolysed substrate was de-esterified enzymatically. With partly purified phytase, the predominant inositol form was tetraphosphate but a preparation having acid phosphatase activity caused an even distribution of lower inositol phosphates after a few hours.  相似文献   
70.
The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non-homologous HolPases that possess distinct folds and belong to three different protein superfamilies have been identified in various phylogenetic clades. However, their evolution has remained unknown to date. Here, we analyzed the evolutionary history of the HolPase from γ-Proteobacteria (HisB-N). It has been argued that HisB-N and its closest homologue d -glycero-d -manno-heptose-1,7-bisphosphate 7-phosphatase (GmhB) have emerged from the same promiscuous ancestral phosphatase. GmhB variants catalyze the hydrolysis of the anomeric d -glycero-d -manno-heptose-1,7-bisphosphate (αHBP or βHBP) with a strong preference for one anomer (αGmhB or βGmhB). We found that HisB-N from Escherichia coli shows promiscuous activity for βHBP but not αHBP, while βGmhB from Crassaminicella sp. shows promiscuous activity for HolP. Accordingly, a combined phylogenetic tree of αGmhBs, βGmhBs, and HisB-N sequences revealed that HisB-Ns form a compact subcluster derived from βGmhBs. Ancestral sequence reconstruction and in vitro analysis revealed a promiscuous HolPase activity in the resurrected enzymes prior to functional divergence of the successors. The following increase in catalytic efficiency of the HolP turnover is reflected in the shape and electrostatics of the active site predicted by AlphaFold. An analysis of the phylogenetic tree led to a revised evolutionary model that proposes the horizontal gene transfer of a promiscuous βGmhB from δ- to γ-Proteobacteria where it evolved to the modern HisB-N.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号