首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   3篇
  国内免费   1篇
  76篇
  2023年   1篇
  2022年   2篇
  2020年   2篇
  2019年   6篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2011年   6篇
  2010年   9篇
  2009年   4篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
11.
Alexa Fluor染料为罗丹明或香豆素的衍生物,是一种含有活性基团的有机荧光染料,具有激发光谱窄、发射光谱宽、量子产率高、光稳定性好,以及受温度、p H影响小等优点。近年来,Alexa Fluor染料作为荧光探针在细胞学和分子生物学研究领域取得了广泛应用,但对Alexa Fluor染料进行系统阐述的文章很少。因此,在综述Alexa Fluor染料的基本特征和优缺点的基础上,阐述其在细胞学和分子生物学研究中的应用,并对其应用和发展方向进行展望。  相似文献   
12.
Efficient electron transfer from reductase domain to oxygenase domain in nitric oxide synthase (NOS) is dependent on the binding of calmodulin (CaM). Rate constants for the binding of CaM to NOS target peptides was only determined previously by surface plasmon resonance (SPR) (Biochemistry 35, 8742-8747, 1996) suggesting that the binding of CaM to NOSs is slow and does not support the fast electron transfer in NOSs measured in previous and this studies. To resolve this contradiction, the binding rates of holo Alexa 350 labeled T34C/T110W CaM (Alexa-CaM) to target peptides from three NOS isozymes were determined using fluorescence stopped-flow. All three target peptides exhibited fast kon constants at 4.5 °C: 6.6 × 108 M− 1 s− 1 for nNOS726-749, 2.9 × 108 M− 1 s− 1 for eNOS492-511 and 6.1 × 108 M− 1 s− 1 for iNOS507-531, 3-4 orders of magnitude faster than those determined previously by SPR. Dissociation rates of NOS target peptides from Alexa-CaM/peptide complexes were measured by Ca2+ chelation with ETDA: 3.7 s− 1 for nNOS726-749, 4.5 s− 1 for eNOS492-511, and 0.063 s− 1 for iNOS507-531. Our data suggest that the binding of CaM to NOS is fast and kinetically competent for efficient electron transfer and is unlikely rate-limiting in NOS catalysis. Only iNOS507-531 was able to bind apo Alexa-CaM, but in a very different conformation from its binding to holo Alexa-CaM.  相似文献   
13.
In honeybees (Apis mellifera), the biogenic amine octopamine has been shown to play a role in associative and non-associative learning and in the division of labour in the hive. Immunohistochemical studies indicate that the ventral unpaired median (VUM) neurones in the suboesophageal ganglion (SOG) are putatively octopaminergic and therefore might be involved in the octopaminergic modulation of behaviour. In contrast to our knowledge about the behavioural effects of octopamine, only one neurone (VUMmx1) has been related to a behavioural effect (the reward function during olfactory learning). In this study, we have investigated suboesophageal VUM neurones with fluorescent dye-tracing techniques and intracellular recordings combined with intracellular staining. Ten different VUM neurones have been found including six VUM neurones innervating neuropile regions of the brain and the SOG exclusively (central VUM neurones) and four VUM neurones with axons in peripheral nerves (peripheral VUM neurones). The central VUM neurones innervate the antennal lobes, the protocerebral lobes (including the lateral horn) and the mushroom body calyces. Of these, a novel mandibular VUM neurone, VUMmd1, exhibits the same branching pattern in the brain as VUMmx1 and responds to sucrose and odours in a similar way. The peripheral VUM neurones innervate the antennal and the mandibular nerves. In addition, we describe one labial unpaired median neurone with a dorsal cell body, DUMlb1. The possible homology between the honeybee VUM neurones and the unpaired median neurones in other insects is discussed. This work was supported by the DFG ME 365/24-2.  相似文献   
14.
Membrane disruption by oligomeric α-synuclein (αS) is considered a likely mechanism of cytotoxicity in Parkinson’s disease (PD). However, the mechanism of oligomer binding and the relation between binding and membrane disruption is not known. We have visualized αS oligomer-lipid binding by fluorescence microscopy and have measured membrane disruption using a dye release assay. The data reveal that oligomeric αS selectively binds to membranes containing anionic lipids and preferentially accumulates into liquid disordered (Ld) domains. Furthermore, we show that binding of oligomers to the membrane and disruption of the membrane require different lipid properties. Thus membrane-bound oligomeric αS does not always cause bilayer disruption.  相似文献   
15.
Metal nanoparticle probes were used as molecular imaging agents to detect the expression levels and spatial distributions of the CCR5 receptors on the cell surfaces. Alexa Fluor 647-labeled anti-CCR5 monoclonal antibodies (mAbs) were covalently bound to 20 nm silver nanoparticles to synthesize the mAb–metal complexes. We measured the single nanoparticle emission of the mAb–metal complexes, showing that the complexes displayed enhanced intensities and reduced lifetimes in comparison with the metal-free mAbs. Six HeLa cell lines with various CCR5 expressions were incubated with the mAb–metal complexes for the target-specific binding to the cell surfaces. Fluorescence cell images were recorded on a time-resolved confocal microscope. The collected images expressed clear CCR5 expression-dependent optical properties. Two regression curves were obtained on the basis of the emission intensity and lifetime over the entire cell images against the number of the CCR5 expression on the cells. The emission from the single mAb–metal complexes could be distinctly identified from the cellular autofluorescence on the cell images. The CCR5 spatial distributions on the cells were analyzed on the cell images and showed that the low-expression cells have the CCR5 receptors as individuals or small clusters but the high expression cells have them as the dense and discrete clusters on the cell surfaces.  相似文献   
16.
Type I interferons (IFNs) elicit antiviral, antiproliferative and immunmodulatory responses by binding to a shared cell surface receptor comprising the transmembrane proteins ifnar1 and ifnar2. Activation of differential response patterns by IFNs has been observed, suggesting that members of the family play different roles in innate immunity. The molecular basis for differential signaling has not been identified yet. Here, we have investigated the recognition of various IFNs including several human IFNalpha species, human IFNomega and human IFNbeta as well as ovine IFNtau2 by the receptor subunits in detail. Binding to the extracellular domains of ifnar1 (ifnar1-EC) and ifnar2 (ifnar2-EC) was monitored in real time by reflectance interference and total internal reflection fluorescence spectroscopy. For all IFNs investigated, competitive 1:1 interaction not only with ifnar2-EC but also with ifnar1-EC was shown. Furthermore, ternary complex formation was studied with ifnar1-EC and ifnar2-EC tethered onto solid-supported membranes. These analyses confirmed that the signaling complexes recruited by IFNs have very similar architectures. However, differences in rate and affinity constants over several orders of magnitude were observed for both the interactions with ifnar1-EC and ifnar2-EC. These data were correlated with the potencies of ISGF3 activation, antiviral and anti-proliferative activity on 2fTGH cells. The ISGF3 formation and antiviral activity correlated very well with the binding affinity towards ifnar2. In contrast, the affinity towards ifnar1 played a key role for antiproliferative activity. A striking correlation was observed for relative binding affinities towards ifnar1 and ifnar2 with the differential antiproliferative potency. This correlation was confirmed by systematically engineering IFNalpha2 mutants with very high differential antiproliferative potency.  相似文献   
17.
This study shows that there is only a negligible difference in actomyosin function in the in vitro motility assay among actin filaments labeled with Rhodamine phalloidin (RhPh), Alexa-488 phalloidin (APh), and biotin-XX phalloidin (BPh). Similar results were obtained at varying ionic strengths (0.02-0.13 M), in the presence of imidazole or 3-[N-morpholino]propanesulfonic acid (MOPS) buffer, and at varying MgATP concentrations (0.1-3 mM). If RhPh- and APh-labeled filaments were studied in a given flow cell, there was minimal variability in sliding velocity between the fluorophores (standard deviation of 3% of the absolute sliding velocity). The variability was considerably smaller than that between flow cells, allowing us to use dual labeling of different actin types and then apply analysis of variance to detect minor functional differences between them. Using this method, we could statistically verify a 4% difference (P<0.001) in sliding velocity (3mM Mg ATP) between cardiac and skeletal muscle actin. Suggested improvements of the method would readily allow the detection of even smaller differences. We discuss implications of the results for nanotechnological applications, understanding actomyosin function, and reducing experimental costs and the use of laboratory animals.  相似文献   
18.
There is an increasing need for developing simple assay formats for biomedical screening purposes. Assays on cell membranes have become important in studies of receptor-ligand interactions and signal pathways. Here luminescence energy transfer was studied on liposomes containing europium ion chelated to 4,4,4-trifluoro-1-(2-naphthalenyl)-1,3-butanedione and trioctylphosphine oxide. Energy transfer efficiency was characterized with biotin-streptavidin interaction, and a model assay concept for a homogeneous time-resolved luminescence resonance energy transfer (LRET) assay was developed. Acceptor-labeled streptavidin was bound to biotinylated lipids on the liposomes, leading to close proximity of the LRET pair. The liposome-based LRET assay was optimized for dye incorporation and concentration, biotinylation degree, liposome size, and kinetics. Sensitivity for a competitive biotin assay was at a picomolar range with a coefficient of variation from 7 to 20%. The developed lipid membrane-based system was feasible in separation free LRET assay concept with high sensitivity, indicating that the assay principle can potentially be used for biologically more relevant target molecules.  相似文献   
19.
The double ring-shaped chaperonin GroEL binds a wide range of non-native polypeptides within its central cavity and, together with its cofactor GroES, assists their folding in an ATP-dependent manner. The conformational cycle of GroEL/ES has been studied extensively but little is known about how the environment in the central cavity affects substrate conformation. Here, we use the von Hippel-Lindau tumor suppressor protein VHL as a model substrate for studying the action of the GroEL/ES system on a bound polypeptide. Fluorescent labeling of pairs of sites on VHL for fluorescence (Förster) resonant energy transfer (FRET) allows VHL to be used to explore how GroEL binding and GroEL/ES/nucleotide binding affect the substrate conformation. On average, upon binding to GroEL, all pairs of labeling sites experience compaction relative to the unfolded protein while single-molecule FRET distributions show significant heterogeneity. Upon addition of GroES and ATP to close the GroEL cavity, on average further FRET increases occur between the two hydrophobic regions of VHL, accompanied by FRET decreases between the N- and C-termini. This suggests that ATP- and GroES-induced confinement within the GroEL cavity remodels bound polypeptides by causing expansion (or racking) of some regions and compaction of others, most notably, the hydrophobic core. However, single-molecule observations of the specific FRET changes for individual proteins at the moment of ATP/GroES addition reveal that a large fraction of the population shows the opposite behavior; that is, FRET decreases between the hydrophobic regions and FRET increases for the N- and C-termini. Our time-resolved single-molecule analysis reveals the underlying heterogeneity of the action of GroES/EL on a bound polypeptide substrate, which might arise from the random nature of the specific binding to the various identical subunits of GroEL, and might help explain why multiple rounds of binding and hydrolysis are required for some chaperonin substrates.  相似文献   
20.
Organelle exchange between cells via tunneling nanotubes (TNTs) is a recently described form of intercellular communication. Here, we show that the selective elimination of filopodia from PC12 cells by 350 nM cytochalasin B (CytoB) blocks TNT formation but has only a weak effect on the stability of existing TNTs. Under these conditions the intercellular organelle transfer was strongly reduced, whereas endocytosis and phagocytosis were not affected. Furthermore, the transfer of organelles significantly correlated with the presence of a TNT-bridge. Thus, our data support that in PC12 cells filopodia-like protrusions are the principal precursors of TNTs and CytoB provides a valuable tool to selectively interfere with TNT-mediated cell-to-cell communication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号