首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   640篇
  免费   71篇
  国内免费   12篇
  723篇
  2024年   3篇
  2023年   23篇
  2022年   28篇
  2021年   35篇
  2020年   46篇
  2019年   53篇
  2018年   44篇
  2017年   21篇
  2016年   25篇
  2015年   30篇
  2014年   37篇
  2013年   50篇
  2012年   28篇
  2011年   34篇
  2010年   15篇
  2009年   25篇
  2008年   25篇
  2007年   26篇
  2006年   20篇
  2005年   13篇
  2004年   20篇
  2003年   24篇
  2002年   11篇
  2001年   9篇
  2000年   4篇
  1999年   8篇
  1998年   12篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有723条查询结果,搜索用时 15 毫秒
111.
C-protein is a major component of skeletal and cardiac muscle thick filaments. Mutations in the gene encoding cardiac C-protein [cardiac myosin binding protein-C (cMyBP-C)] are one of the principal causes of hypertrophic cardiomyopathy. cMyBP-C is a string of globular domains including eight immunoglobulin-like and three fibronectin-like domains termed C0-C10. It binds to myosin and titin, and probably to actin, and may have both a structural and a regulatory role in muscle function. To help to understand the pathology of the known mutations, we have solved the structure of the immunoglobulin-like C1 domain of MyBP-C by X-ray crystallography to a resolution of 1.55 Å. Mutations associated with hypertrophic cardiomyopathy are clustered at one end towards the C-terminus, close to the important C1C2 linker, where they alter the structural integrity of this region and its interactions.  相似文献   
112.
Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens revealed that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal in this study was to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction revealed intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC and fitted an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 (subfragment 2) crystal structure to the reconstruction. The fitting suggests one intramolecular interaction, between the cardiomyopathy loop of the free head and its own S2, and two intermolecular interactions, between the cardiac loop of the free head and the essential light chain of the blocked head and between the Leu305-Gln327 interaction loop of the free head and the N-terminal fragment of the RLC of the blocked head. These interactions, added to those previously described, would help switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.  相似文献   
113.
Dilated cardiomyopathy often results from autoimmunity triggered by microbial infections during myocarditis. However, it remains unclear how immunological disorders are implicated in pathogenesis of autoimmune myocarditis. Here, we demonstrated that Sema4A, a class IV semaphorin, plays key roles in experimental autoimmune myocarditis (EAM). Dendritic cells pulsed with myosin heavy chain-α peptides induced severe myocarditis in wild-type mice, but not in Sema4A-deficient mice. In adoptive transfer experiments, CD4+ T-cells from wild-type mice induced severe myocarditis, while CD4+ T-cells from Sema4A-deficient mice exhibited considerably attenuated myocarditis. Our results indicated that Sema4A is critically involved in EAM by regulating differentiation of T-cells.  相似文献   
114.
A study of the genetic diversity of populations of Saccharomyces cerevisiae was conducted in ten different cachaça producers (alambiques) in the southern state of Minas Gerais, Brazil. A total of 106 isolates were identified by PCR using the primer SCREC114, specific to S. cerevisiae, by pulsed-field gel electrophoresis (PFGE) and by restriction fragment polymorphism of mitochondrial DNA analysis (RFLP-mtDNA). PCR showed a product of amplification to 61 isolates, enabling a rapid identification of S. cerevisiae in different alambiques. Nine different profiles were found by PFGE; all the yeasts identified as S. cerevisiae by PCR had profiles similar to that of the marker S. cerevisiae, highlighting the specificity of primer SCREC114. RFLP-mtDNA, using four different enzymes, enabled the grouping of strains of S. cerevisiae, with 80%–100% similarity. Some alambiques that had a higher frequency of S. cerevisiae characterized by PCR and PFGE, had a lower level of genetic diversity determined by RFLP-mtDNA, indicating the ability of these strains to lead the fermentative process.  相似文献   
115.
Diabetes mellitus is one of the most common chronic diseases affecting millions of people worldwide. Cardiovascular complication including myocardial infarction is one of the major causes of death in diabetic patients. Diabetes mellitus induces abnormal pathological findings including cell hypertrophy, neuropathy, interstitial fibrosis, myocytolysis and apoptosis and lipid deposits in the heart. In addition, the cytoplasmic organelles of cardiomyocytes including the plasma membrane, mitochondrion and sarcoplasmic reticulum are also impaired in both type I and type II diabetes. Hyperglycaemia is a major aetiological factor in the development of diabetic cardiomyopathy in patients suffering from diabetes. Hyperglycaemia promotes the production of reactive oxygen (ROS) and nitrogen species (RNS). The release of ROS and RNS induces oxidative stress leading to abnormal gene expression, faulty signal transduction and apoptosis of cardiomyocytes. Hyperglycaemia also induces apoptosis by p53 and the activation of the cytochrome c-activated caspase-3 pathway. Stimulation of connective tissue growth factor and the formation of advanced glycation end products in extracellular matrix proteins induces collagen cross-linking and contribute to the fibrosis observed in the interstitium of the heart of diabetic subjects. In terms of signal transduction, defects in intracellular Ca2+ signalling due to alteration of expression and function of proteins that regulate intracellular Ca2+ also occur in diabetes. All of these abnormalities result in gross dysfunction of the heart. Beta-adrenoreceptor antagonists, ACE inhibitors, endothelin-receptor antagonist (Bonestan®), adrenomedullin, hormones (insulin, IGF-1) and antioxidants (magniferin, metallothionein, vitamins C and E) reduce interstitial fibrosis and improve cardiac function in diabetic cardiomyopathy. (Mol Cell Biochem 261: 187–191, 2004)  相似文献   
116.
We describe a patient with acute heart failure shortly after pacemaker implantation. With the documentation of typical dyskinesia of the apical segments with hyperdynamic contractility of the basal segments and a normal coronary angiogram, pacemaker implantation-induced Takotsubo cardiomyopathy was diagnosed. Supportive care was administered and within several days the patient’s symptoms resolved. After several weeks, the left ventricular function had fully recovered. A review of the literature on Takotsubo cardiomyopathy after pacemaker implantation is presented.  相似文献   
117.
We describe a 76-year-old patient with takotsubo cardiomyopathy complicated by cardiac tamponade. Pericardial effusion in takotsubo cardiomyopthy is common but a cardiac tamponade is very rare. The use of anticoagulants may increase the risk of pericardial effusion and should be considered with care.  相似文献   
118.
119.
Emerging evidence indicates that irisin provides beneficial effects in diabetes. However, whether irisin influences the development of diabetic cardiomyopathy (DCM) remains unclear. Therefore, we investigated the potential role and mechanism of action of irisin in diabetes‐induced myocardial dysfunction in mice. Type 1 diabetes was induced in mice by injecting streptozotocin, and the diabetic mice were administered recombinant r‐irisin (low or high dose: 0.5 or 1.5 μg/g body weight/day, I.P.) or PBS for 16 weeks. Irisin treatment did not alter blood glucose levels in the diabetic mice. However, the results of echocardiographical and histopathological assays indicated that low‐dose irisin treatment alleviated cardiac fibrosis and left ventricular function in the diabetic mice, whereas high‐dose irisin failed to mitigate the ventricular function impairment and increased collagen deposition. The potential mechanism underlying the effect of low‐dose irisin involved irisin‐mediated inhibition of high glucose‐induced endothelial‐to‐mesenchymal transition (EndMT); conversely, high‐dose irisin treatment enhanced high glucose‐induced MMP expression by stimulating MAPK (p38 and ERK) signalling and cardiac fibroblast proliferation and migration. Low ‐ dose irisin alleviated DCM development by inhibiting high glucose‐induced EndMT. By contrast, high‐dose irisin disrupted normal MMP expression and induced cardiac fibroblast proliferation and migration, which results in excess collagen deposition. Thus, irisin can inhibit high glucose‐induced EndMT and exert a dose‐dependent bidirectional effect on DCM.  相似文献   
120.
Inflammation and oxidative stress play a crucial role in the development of diabetic cardiomyopathy (DCM). We previously had synthesized an Aza resveratrol–chalcone derivative 6b, of which effectively suppressing lipopolysaccharide (LPS)‐induced inflammatory response in macrophages. This study aimed to investigate the potential protective effect of 6b on DCM and underlying mechanism. In H9c2 myocardial cells, 6b potently decreased high glucose (HG)‐induced cell fibrosis, hypertrophy and apoptosis, alleviating inflammatory response and oxidant stress. In STZ‐induced type 1 diabetic mice (STZ‐DM1), orally administration with 6b for 16 weeks significantly attenuated cardiac hypertrophy, apoptosis and fibrosis. The expression of inflammatory cytokines and oxidative stress biomarkers was also suppressed by 6b distinctly, without affecting blood glucose and body weight. The anti‐inflammatory and antioxidative activities of 6b were mechanistic associated with nuclear factor‐kappa B (NF‐κB) nucleus entry blockage and Nrf2 activation both in vitro and in vivo. The results indicated that 6b can be a promising cardioprotective agent in treatment of DCM via inhibiting inflammation and alleviating oxidative stress. This study also validated the important role of NF‐κB and Nrf2 taken in the pathogenesis of DCM, which could be therapeutic targets for diabetic comorbidities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号