首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   34篇
  2023年   2篇
  2022年   3篇
  2021年   12篇
  2020年   17篇
  2019年   10篇
  2018年   12篇
  2017年   12篇
  2016年   17篇
  2015年   16篇
  2014年   14篇
  2013年   19篇
  2012年   6篇
  2011年   16篇
  2010年   18篇
  2009年   28篇
  2008年   27篇
  2007年   26篇
  2006年   22篇
  2005年   15篇
  2004年   13篇
  2003年   19篇
  2002年   12篇
  2001年   10篇
  2000年   11篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1974年   2篇
排序方式: 共有405条查询结果,搜索用时 15 毫秒
51.
52.
Rapid warming and changes in water availability at high latitudes alter resource abundance, tree competition, and disturbance regimes. While these changes are expected to disrupt the functioning of boreal forests, their ultimate implications for forest composition are uncertain. In particular, recent site‐level studies of the Alaskan boreal forest have reported both increases and decreases in productivity over the past few decades. Here, we test the idea that variations in Alaskan forest growth and mortality rates are contingent on species composition. Using forest inventory measurements and climate data from plots located throughout interior and south‐central Alaska, we show significant growth and mortality responses associated with competition, midsummer vapor pressure deficit, and increased growing season length. The governing climate and competition processes differed substantially across species. Surprisingly, the most dramatic climate response occurred in the drought tolerant angiosperm species, trembling aspen, and linked high midsummer vapor pressure deficits to decreased growth and increased insect‐related mortality. Given that species composition in the Alaskan and western Canadian boreal forests is projected to shift toward early‐successional angiosperm species due to fire regime, these results underscore the potential for a reduction in boreal productivity stemming from increases in midsummer evaporative demand.  相似文献   
53.
Climate change represents a primary threat to species persistence and biodiversity at a global scale. Cold adapted alpine species are especially sensitive to climate change and can offer key “early warning signs” about deleterious effects of predicted change. Among mountain ungulates, survival, a key determinant of demographic performance, may be influenced by future climate in complex, and possibly opposing ways. Demographic data collected from 447 mountain goats in 10 coastal Alaska, USA, populations over a 37‐year time span indicated that survival is highest during low snowfall winters and cool summers. However, general circulation models (GCMs) predict future increase in summer temperature and decline in winter snowfall. To disentangle how these opposing climate‐driven effects influence mountain goat populations, we developed an age‐structured population model to project mountain goat population trajectories for 10 different GCM/emissions scenarios relevant for coastal Alaska. Projected increases in summer temperature had stronger negative effects on population trajectories than the positive demographic effects of reduced winter snowfall. In 5 of the 10 GCM/representative concentration pathway (RCP) scenarios, the net effect of projected climate change was extinction over a 70‐year time window (2015–2085); smaller initial populations were more likely to go extinct faster than larger populations. Using a resource selection modeling approach, we determined that distributional shifts to higher elevation (i.e., “thermoneutral”) summer range was unlikely to be a viable behavioral adaptation strategy; due to the conical shape of mountains, summer range was expected to decline by 17%–86% for 7 of the 10 GCM/RCP scenarios. Projected declines of mountain goat populations are driven by climate‐linked bottom‐up mechanisms and may have wide ranging implications for alpine ecosystems. These analyses elucidate how projected climate change can negatively alter population dynamics of a sentinel alpine species and provide insight into how demographic modeling can be used to assess risk to species persistence.  相似文献   
54.
Genetic analyses of two unknown but putative Atlantic salmon Salmo salar captured in the Copper River drainage, Alaska, demonstrated the need for validation of morphologically unusual fishes. Mitochondrial DNA sequences (control region and cytochrome b) and data from two nuclear genes [first internal transcribed spacer (ITS-1) sequence and growth hormone (GH1) amplification product] indicated that the fish caught in fresh water on the Martin River was a coho salmon Oncorhynchus kisutch , while the other fish caught in the intertidal zone of the Copper River delta near Grass Island was an Atlantic salmon. Determination of unusual or cryptic fish based on limited physical characteristics and expected seasonal spawning run timing will add to the controversy over farmed Atlantic salmon and their potential effects on native Pacific species. It is clear that determination of all putative collections of Atlantic salmon found in Pacific waters requires validation. Due to uncertainty of fish identification in the field using plastic morphometric characters, it is recommended that genetic analyses be part of the validation process.  相似文献   
55.
The effect of plant growth substances (PGSs) on conchocelis growth of Alaskan Porphyra (P. abbottiae V. Krishnam., P. pseudolanceolata V. Krishnam., P. pseudolinearis Ueda) was investigated. Growth was measured under different combinations of PGS concentrations (0, 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 ppm), PGS type (gibberellic acid, kinetin, and indole‐3‐acetic acid), temperature (7, 11, and 15°C), and photoperiod (16:8 light:dark [L:D] cycle and 8:16 L:D cycle). Plant growth substances effectively promoted the growth of Porphyra conchocelis. Depending on culture conditions, growth rates were increased relative to controls 6.9%–31.7% for P. abbottiae, 4.7%–25.7% for P. pseudolanceolata, and 8.9%–35.1% for P. pseudolinearis. Maximal growth of P. abbottiae occurred with 0.8 ppm kinetin, 15°C, and short‐day conditions (8:16 L:D). Porphyra pseudolanceolata exhibited maximal growth with 0.4 ppm indole‐3‐acetic acid, 7°C, and long days (16:8 L:D). Indole‐3‐acetic acid also effected maximal growth of P. pseudolinearis at 0.4 ppm, 15°C, and long‐day conditions (16:8 L:D). For P. abbottiae and P. pseudolinearis, intermediate PGS concentrations (0.4–1.6 ppm) had the greatest growth‐stimulating effects, whereas for P. pseudolanceolata, higher growth generally occurred at lower concentrations (0.1–0.8 ppm). Kinetin and indole‐3‐acetic acid had more influence on the conchocelis phase than gibberellic acid. The PGS concentrations greater than 1.6 ppm had a diminishing effect on growth, especially in P. pseudolanceolata. For P. abbottiae and P. pseudolinearis, higher temperatures resulted in higher growth rates, in contrast to P. pseudolanceolata, which grew faster at the lower temperatures.  相似文献   
56.
Aim  We examined the interactive effects of mammalian herbivory and fluvial dynamics on vegetation dynamics and composition along the Tanana River in interior Alaska.
Location  Model parameters were obtained from field studies along the Tanana River, Alaska between Fairbanks (64°50.50' N, 147°43.30' W) and Manley Hot Springs (65°0.0' N, 150°36.0' W).
Methods  We used a spatially explicit model of landscape dynamics (ALFRESCO) to simulate vegetation changes on a 1-year time-step. The model was run for 250 years and was replicated 100 times.
Results  Increases in herbivory decreased the proportion of early successional vegetation and increased the proportion of late successional vegetation on the simulated landscape. Erosion and accretion worked as antagonists to herbivory, increasing the amount of early successional vegetation and decreasing the amount of late successional vegetation. However, the interactive effects of herbivory and erosion/accretion were especially important in determining system response, particularly in early seral vegetation types. High erosion rates, when coupled with low herbivory, greatly increased the proportion of willow on the landscape. When coupled with high herbivory, however, they greatly increased the proportion of alder on the landscape. At low levels of herbivory, alder abundance peaked at intermediate levels of erosion/accretion.
Main conclusions  Neither erosion/accretion nor herbivory produced consistent landscape patterns that could be predicted independently of the other. These findings underscore the importance of the interactive effects of biotic and abiotic disturbances in shaping large-scale landscape vegetation patterns in boreal floodplain ecosystems – systems traditionally thought to be driven primarily by abiotic disturbance alone.  相似文献   
57.
Total numbers, generic distribution and percentage species distribution were determined for the ciliate protozoa in rumen contents obtained from Alaskan moose (Alces americana), musk-ox (Ovibos moschatus) and Dall mountain sheep (Ovis dalli). The musk-ox has a fauna somewhat similar to that previously observed in reindeer and caribou. In contrast, only protozoa in the genus Entodinium were observed in moose, while Dall mountain sheep have a fauna unique among Alaskan ruminants studied to date. Other than Entodinium exiguum which was common to all animals, only 2 additional species of Entodinium, observed in the moose and musk-ox, occurred in more than one animal species. Four new species of protozoa are described, Entodinium dalli sp.n., Entodinium constrictum sp.n. and Polyplastron alaskum sp.n. from the Dall mountain sheep and Entodinium alces sp.n. from moose.  相似文献   
58.
59.
Comparative studies of genetic diversity and population structure can shed light on the ecological and evolutionary factors that influence host–parasite interactions. Here we examined whether geography, time and genetic variation in Alaskan three‐spined stickleback (Gasterosteus aculeatus Linneaus) hosts shape the population genetic structure of the diphyllobothridean cestode parasite Schistocephalus solidus (Müller, 1776). Host lineages and haplotypes were identified by sequencing the mitochondrial cytochrome b gene, and host population structure was assessed by Bayesian clustering analysis of allelic variation at 11 microsatellite loci. Parasite population structure was characterized according to allelic variation at eight microsatellite loci. Mantel tests and canonical redundancy analysis were conducted to evaluate the proportion of parasite genetic variation attributable to time and geography vs. host lineage, haplotype, and genotypic cluster. Host and parasite population structure were largely discordant across the study area, probably reflecting differences in gene flow, environmental influences external to the host, and genomic admixture among host lineages. We found that geography explained the greatest proportion of parasite genetic variation, but that variation also reflects time, host lineage, and host haplotype. Associations with host haplotypes suggest that one parasite genotypic cluster exhibits a narrower host range, predominantly infecting the most common host haplotypes, whereas the other parasite cluster infects all haplotypes equally, including rare haplotypes. Although experimental infection trials might prove otherwise, distributional differences in hosts preferentially infected by S. solidus could underlie the observed pattern of population structure.  相似文献   
60.
Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems were EMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号