首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   937篇
  免费   28篇
  国内免费   19篇
  984篇
  2023年   14篇
  2022年   23篇
  2021年   15篇
  2020年   12篇
  2019年   24篇
  2018年   31篇
  2017年   11篇
  2016年   8篇
  2015年   9篇
  2014年   42篇
  2013年   73篇
  2012年   34篇
  2011年   43篇
  2010年   21篇
  2009年   32篇
  2008年   42篇
  2007年   45篇
  2006年   42篇
  2005年   39篇
  2004年   40篇
  2003年   45篇
  2002年   8篇
  2001年   18篇
  2000年   14篇
  1999年   9篇
  1998年   17篇
  1997年   13篇
  1996年   11篇
  1995年   15篇
  1994年   21篇
  1993年   16篇
  1992年   14篇
  1991年   6篇
  1990年   6篇
  1989年   12篇
  1988年   19篇
  1987年   7篇
  1986年   11篇
  1985年   12篇
  1984年   13篇
  1983年   5篇
  1982年   20篇
  1981年   19篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   6篇
  1974年   5篇
  1972年   3篇
排序方式: 共有984条查询结果,搜索用时 9 毫秒
81.
Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass tryptophan altogether. It was also postulated that different plants use different pathways, further adding to the complexity. In 2011, however, it was suggested that one of the four tryptophan-dependent pathways, via indole-3-pyruvic acid (IPyA), is the main pathway in Arabidopsis thaliana,1 although concurrent operation of one or more other pathways has not been excluded. We recently showed that, for seeds of Pisum sativum (pea), it is possible to go one step further.2 Our new evidence indicates that the IPyA pathway is the only tryptophan-dependent IAA synthesis pathway operating in pea seeds. We also demonstrated that the main auxin in developing pea seeds, 4-chloroindole-3-acetic acid (4-Cl-IAA), which accumulates to levels far exceeding those of IAA, is synthesized via a chlorinated version of the IPyA pathway.  相似文献   
82.
Changes in the contents of starch, protein, DNA, RNA, total phosphorus, acid soluble phosphorus and inorganic phosphorus, and in the activities of some enzymes of carbohydrate, amino acid, nucleic acid and phosphate metabolism were studied during the germination of Cuscuta campestris seeds. The results are expressed on per seed basis.
Starch content in Cuscuta seeds showed a steady decline with most of it depleted by the end of the eighth day of germination. Protein content increased with germination up to 48 h and then decreased. RNA and DNA contents increased to a maximal level on the fourth day of germination and then decreased. Total phosphorus in the seeds remained almost unchanged during the period of study. Both trichloroacetic acid soluble and inorganic phosphorus increased until the third day and then decreased. Phytin was rapidly hydrolyzed with little being detectable by the seventh day of germination. Glucose-6-phosphate dehydrogenase increased with germination, while fructose bisphosphate aldolase which is indispensable for glycolysis, decreased with germination. Ribonuclease and deoxyribonuclease increased till the third and fourth day, respectively, and then decreased. Aspartate and alanine aminotransferases showed a maximum on the second day and then decreased. Activities of alkaline fructose-1,6-bisphosphatase and phytase were absent in the dry seeds and appeared only on the second day of germination. Both α- and β-amylase activities were present in the dry seed.  相似文献   
83.
The relationship between neuronal glutamate turnover, the glutamate/glutamine cycle and de novo glutamate synthesis was examined using two different model systems, freshly dissected rat retinas ex vivo and in vivo perfused rat brains. In the ex vivo rat retina, dual kinetic control of de novo glutamate synthesis by pyruvate carboxylation and transamination of alpha-ketoglutarate to glutamate was demonstrated. Rate limitation at the transaminase step is likely imposed by the limited supply of amino acids which provide the alpha-amino group to glutamate. Measurements of synthesis of (14)C-glutamate and of (14)C-glutamine from H(14)CO(3) have shown that (14)C-amino acid synthesis increased 70% by raising medium pyruvate from 0.2 to 5 mM. The specific radioactivity of (14)C-glutamine indicated that approximately 30% of glutamine was derived from (14)CO(2) fixation. Using gabapentin, an inhibitor of the cytosolic branched-chain aminotransferase, synthesis of (14)C-glutamate and (14)C-glutamine from H(14)CO(3)(-) was inhibited by 31%. These results suggest that transamination of alpha-ketoglutarate to glutamate in Müller cells is slow, the supply of branched-chain amino acids may limit flux, and that branched-chain amino acids are an obligatory source of the nitrogen required for optimal rates of de novo glutamate synthesis. Kinetic analysis suggests that the glutamate/glutamine cycle accounts for 15% of total neuronal glutamate turnover in the ex vivo retina. To examine the contribution of the glutamate/glutamine cycle to glutamate turnover in the whole brain in vivo, rats were infused intravenously with H(14)CO(3)(-). (14)C-metabolites in brain extracts were measured to determine net incorporation of (14)CO(2) and specific radioactivity of glutamate and glutamine. The results indicate that 23% of glutamine in the brain in vivo is derived from (14)CO(2) fixation. Using published values for whole brain neuronal glutamate turnover, we calculated that the glutamate/glutamine cycle accounts for approximately 60% of total neuronal turnover. Finally, differences between glutamine/glutamate cycle rates in these two model systems suggest that the cycle is closely linked to neuronal activity.  相似文献   
84.
Immortal cells require a mechanism of telomere length control in order to divide infinitely. One mechanism is telomerase, an enzyme that compensates the loss of telomeric DNA. The second mechanism is the alternative lengthening of telomeres (ALT) pathway. In ALT pathway cells, homologous recombination between telomeric DNA is the mechanism by which telomere homeostasis is achieved. We developed a novel homologous recombination reporter system that is able to measure inter-telomeric recombination in a sensitive manner. We asked the fundamental question if homologous recombination between different telomeres is present in telomerase-positive cells. In this in vitro study, we showed that homologous recombination between telomeres is detectable in ALT cells with the same frequency as in cells that utilize the telomerase pathway. We further described an ALT cell clone that showed peaks of recombination which were not detected in telomerase-positive clones. In telomerase-positive cells the frequency of inter-telomeric recombination was not increased by shortened telomeres or by a fragile telomere phenotype induced with aphidicolin. ALT cells, in contrast, responded to aphidicolin with an increase in the frequency of recombination. Our results indicate that inter-telomeric recombination is present in both pathways of telomere length control, but the factors that increase recombination are different in ALT and telomerase-positive cells.  相似文献   
85.
Tocopherols are presumed to be important antioxidants and scavengers of lipid radicals and reactive oxygen species in plants. Age is known to be a condition under which oxidative stress increases. In leaves of aging Arabidopsis thaliana plants, the content of alpha-tocopherol as well as of gamma-tocopherol increased significantly. The activity of tyrosine aminotransferase, which supplies the biosynthetic pathway with 4-hydroxyphenylpyruvate, was increased as well. On the other hand, coronatine, a phytotoxin mimicking octadecanoids and leading to symptoms of senescence, caused a moderate increase in alpha-tocopherol as well as some enhancement of gamma-tocopherol.  相似文献   
86.
Aspartate aminotransferases (AspATs; EC 2.6.1.1) catalyze the conversion of aspartate and α-ketoglutarate into oxaloacetate and glutamate and are key enzymes in the nitrogen metabolism of all organisms. Recent findings suggest that the plasmodial enzyme [Plasmodium falciparum aspartate aminotransferase (PfAspAT)] may also play a pivotal role in energy metabolism and in the de novo biosynthesis of pyrimidines. However, while PfAspAT is a potential drug target, the high homology between the active sites of currently available AspAT structures hinders the development of specific inhibitors of these enzymes. In this article, we report the X-ray structure of the PfAspAT homodimer at a resolution of 2.8 Å. While the overall fold is similar to the currently available structures of other AspATs, the structure presented shows a significant divergence in the conformation of the N-terminal residues. Deletion of these divergent PfAspAT N-terminal residues results in a loss of activity for the recombinant protein, and addition of a peptide containing these 13 N-terminal residues results in inhibition both in vitro and in a lysate isolated from cultured parasites, while the activity of human cytosolic AspAT is unaffected. The finding that the divergent N-terminal amino acids of PfAspAT play a role in catalytic activity indicates that specific inhibition of the enzyme may provide a lead for the development of novel compounds in the treatment of malaria. We also report on the localization of PfAspAT to the parasite cytosol and discuss the implications of the role of PfAspAT in the supply of malate to the parasite mitochondria.  相似文献   
87.
Hyper-thermostable aminotransferase from Thermococcus profundus (MsAT) was used to synthesize 3-(2-naphthyl)-l-alanine (Nal) by transamination between its corresponding -keto acid, 3-(2-naphthyl)pyruvate (NPA) and l-glutamate (Glu) at 70 °C. Equilibrium of this reaction was shifted toward Nal production due to its low solubility, giving rise to Nal precipitate. Optically pure Nal (>99% ee) was synthesized with 93% (mol mol–1) yield from 180 mM NPA and 360 mM Glu.  相似文献   
88.
Two serine racemases (I and II) were isolated from Streptomyces garyphalus. Serine racemase I (molecular weight 93,000) was purified to a single band in an analytical electrofocusing system. Serine racemase II (molecular weight 73,000) was partially purified. Both enzymes used pyridoxal-5-phosphate as cofactor. Besides serine the enzymes utilized alanine as substrate but no other amino acid tested. The K m values of l-alanine and l-serine for enzyme I were 111 mM and 35 mM respectively. Enzyme I was not inhibited by d-cycloserine but by hydroxylamine. Both substances inhibited enzyme II. The serine racemases may be involved in the biosynthesis of d-cycloserine in S. garyphalus.  相似文献   
89.
Vancomycin exerts its antibacterial activity by binding to d-Ala-d-Ala in bacterial cell wall precursors. Vancomycin resistance in vancomycin-resistant enterococci (VRE) is due to an alternative cell wall biosynthesis pathway in which d-Ala-d-Ala is replaced, most commonly by d-Ala-d-Lac. In this study, we extend our recently developed Marfey’s derivatization-based liquid chromatography–tandem mass spectrometry (LC–MS/MS) assay for l-Ala, d-Ala, and d-Ala-d-Ala to d-Ala-d-Lac and apply it to the quantitation of these metabolites in VRE. The first step in this effort was the development of an effective washing method for removing medium components from VRE cells. Mar-d-Ala-d-Lac was well resolved chromatographically from Mar-d-Ala-d-Ala, a prerequisite for MS/MS quantitation of d-Ala-d-Ala and d-Ala-d-Lac. Mar-d-Ala-d-Lac gave similar detection parameters, sensitivity, and linearity as Mar-d-Ala-d-Ala. l-Ala, d-Ala, d-Ala-d-Ala, and d-Ala-d-Lac levels in VRE were then determined in the presence of variable vancomycin levels. Exposure to vancomycin resulted in a dramatic reduction of d-Ala-d-Ala, with a response midpoint at approximately 0.06 μg/ml vancomycin and with a broad response profile up to 128 μg/ml vancomycin. In contrast, d-Ala-d-Lac was present in the absence of vancomycin, with its level constant up to 128 μg/ml vancomycin. This method will be useful for the discovery, characterization, and refinement of new agents targeting vancomycin resistance in VRE.  相似文献   
90.
A previous study on the evolutionary patterns of Tarentola mauritanica demonstrated that low levels of mitochondrial diversity observed in the European populations relative to nuclear markers were consistent with a selective sweep hypothesis. In order to unravel the mitochondrial evolutionary history in this European population and two other lineages of T. mauritanica (Iberian and North African clades), variation within 22 nearly complete mitogenomes was analyzed. Surprisingly, each clade seems to have a distinct evolutionary history; with both the European and Iberian clades presenting a decrease of polymorphism, which in the former is consistent with departure from neutrality of the mtDNA (positive or background selection), but in the latter seems to be the result of a bottleneck after a population expansion. The pattern exhibited by the North African clade seems to be a consequence of adaptation to certain mtDNA variants by positive selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号