全文获取类型
收费全文 | 247篇 |
免费 | 17篇 |
专业分类
264篇 |
出版年
2024年 | 4篇 |
2023年 | 5篇 |
2022年 | 5篇 |
2021年 | 5篇 |
2020年 | 4篇 |
2019年 | 6篇 |
2018年 | 4篇 |
2017年 | 6篇 |
2016年 | 8篇 |
2015年 | 18篇 |
2014年 | 32篇 |
2013年 | 33篇 |
2012年 | 16篇 |
2011年 | 23篇 |
2010年 | 9篇 |
2009年 | 7篇 |
2008年 | 11篇 |
2007年 | 12篇 |
2006年 | 16篇 |
2005年 | 8篇 |
2004年 | 11篇 |
2003年 | 2篇 |
2002年 | 6篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1997年 | 2篇 |
1993年 | 1篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1987年 | 1篇 |
1981年 | 1篇 |
排序方式: 共有264条查询结果,搜索用时 15 毫秒
231.
C.-R. Martling R. Matran K. Alving T. Hökfelt J. M. Lundberg 《Cell and tissue research》1990,260(2):223-233
Summary The occurrence and distribution of peptide-containing nerve fibres [substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), neuropeptide Y (NPY)] and noradrenergic nerve fibres [tyrosine hydroxylase (TH)- and dopamine beta hydroxylase (DBH)-positive] in the airways of the pig were studied by means of immunohistochemistry. SP- and CGRP-immunoreactive (-IR) nerve fibres were present close to and within the lining respiratory epithelium, around blood vessels, within the tracheobronchial smooth muscle layer and around local tracheobronchial ganglion cells. The content of CGRP- and neurokinin A (NKA)-like immunoreactivity (-LI) measured by radioimmunoassay (RIA) was twice as high in the trachea compared to that in the peripheral bronchi. SP was a more potent constrictor agent than NKA on pig bronchi in vitro. CGRP had a relaxant effect on precontracted pig bronchi. On blood vessels CGRP exerted a relaxant effect that was more pronounced on pulmonary arteries than on bronchial arteries. VIP/PHI-IR fibres were seen in association with exocrine glands and in the tracheobronchial smooth muscle layer. VIP-positive nerve fibres were abundant around blood vessels in the trachea but sparse or absent around blood vessels in the peripheral bronchi. This histological finding was supported by RIA; it was shown that the content of peptides displaying VIP-like immunoreactivity (-LI) was 18 times higher in the trachea compared to peripheral bronchi. VIP was equally potent as CGRP in relaxing precontracted pig bronchi in vitro. Both bronchial and pulmonary arteries were relaxed by VIP. NPY was colocalized with VIP in tracheal periglandular nerve fibres and in nerve fibres within the tracheobronchial smooth muscle layer. NPY was also present in noradrenergic (DBH-positive) vascular nerve fibres. The content of NPY was much higher (15-fold) in the trachea compared to small bronchi. NPY caused a contraction of both pulmonary and bronchial arteries. The bronchial smooth muscle contraction to field stimulation in vitro was purely cholinergic. A non-cholinergic relaxatory effect following field stimulation was observed after bronchial precontraction. Capsaicin had no effect on pig bronchi in vitro. 相似文献
232.
In airway myocytes signal transduction via cytosolic calcium plays an important role. In relation with experimental results
we review models of basic molecular and cellular mechanisms involved in the signal transduction from the myocyte stimulation
to the activation of the contractile apparatus. We concentrate on mechanisms for encoding of input signals into Ca2+ signals and the mechanisms for their decoding. The mechanisms are arranged into a general scheme of cellular signaling, the
so-called bow-tie architecture of signaling, in which calcium plays the role of a common media for cellular signals and links
the encoding and decoding part. The encoding of calcium signals in airway myocytes is better known and is presented in more
detail. In particular, we focus on three recent models taking into account the intracellular calcium handling and ion fluxes
through the plasma membrane. The model of membrane conductances was originally proposed for predicting membrane depolarization
and voltage-dependent Ca2+ influx triggered by initial cytosolic Ca2+ increase as observed on cholinergic stimulation. Cellular models of intracellular Ca2+ handling were developed to investigate the role of a mixed population of InsP3 receptor isoforms and the cellular environment in the occurrence of Ca2+ oscillations, and the respective role of the sarcoplasmic reticulum, mitochondria, and cytosolic Ca2+-binding proteins in cytosolic Ca2+ clearance. Modeling the mechanisms responsible for the decoding of calcium signals is developed in a lesser extent; however,
the most recent theoretical studies are briefly presented in relation with the known experimental results. 相似文献
233.
234.
Yamashita N Tashimo H Ishida H Kaneko F Nakano J Kato H Hirai K Horiuchi T Ohta K 《Cellular immunology》2002,219(2):92-97
Asthma is recognized as an inflammatory disease in which various cytokines are involved. Among these, granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to play a critical role in the survival of eosinophils and in the activation of antigen-presenting cells (APC). We studied the effects of neutralization of GM-CSF in a murine model of asthma, to elucidate its role in enhanced airway responsiveness and in airway inflammation. A/J mice, which are genetically predisposed to acetylcholine hyperresponsiveness, were immunized with ovalbumin (OA) and alum. Thereafter, the mice were subjected to a two-week regimen of OA inhalation, during which either goat anti-mouse polyclonal GM-CSF antibody or isotype control goat IgG was administered intranasally. Pulmonary function was then analyzed using whole body plethysmography before and after acetylcholine (Ach) inhalation. Here we show that OA inhalation following OA immunization increased airway responsiveness to acetylcholine and induced GM-CSF as well as IL-4 and IL-5 mRNA expression in the lung. The administration of GM-CSF-neutralizing antibody during OA inhalation significantly reduced this increased airway hyperresponsiveness and also inhibited airway inflammation. Thus, endogenous GM-CSF plays an important role in the process of airway inflammation and airway hyperresponsiveness after antigen-specific immunity has been established. 相似文献
235.
目的观察通光散对小鼠哮喘模型气道反应和气道炎症的影响。方法35只6周龄BALB/c小鼠随机分为哮喘模型组、正常对照组和药物实验组。模型组和药物组以鸡卵白蛋白(OVA)致敏、激发;药物组在最后一次致敏后每天灌胃给予通光散汤0.72mL(相当于0.04g生药);对照组以等体积的Ns代替OVA致敏、激发。末次激发48h后处理小鼠:无创法测定小鼠的气道高反应性,观察气道阻力变化;支气管肺泡灌洗液(BALF)行细胞学分类;观察肺组织的病理变化。结果①药物组小鼠气道阻力的变化与模型组相比明显下降,差异显著(P<0.05);②药物组BALF白细胞总数和Eos(%)与模型组相比明显降低(P<0.05)。③模型组小鼠肺脏组织支气管、血管黏膜下和周围肺组织有明显的炎症细胞浸润,大量炎症细胞向支气管和血管迁移,上皮细胞部分有脱落,部分可见黏液栓,血管壁明显水肿;治疗组小鼠肺组织炎性细胞浸润和管腔黏液分泌情况较模型组明显减轻,气道粘液的分泌量得到明显的控制。结论通光散汤对小鼠哮喘模型气道高反应性和气道炎症有显著抑制作用。 相似文献
236.
Moon DO Kim MO Lee HJ Choi YH Park YM Heo MS Kim GY 《Biochemical and biophysical research communications》2008,375(2):275-279
Curcumin has been strongly implicated as an anti-inflammatory agent, but the precise mechanisms of its action are largely unknown. In this study, we show that curcumin contributes to anti-inflammatory activity in the murine asthma model and lung epithelial cell A549 through suppression of nitric oxide (NO). To address this problem, curcumin was injected into the peritoneum of ovalbumin (OVA)-sensitized mice before the last allergen challenge. OVA challenge resulted in activation of the production of inducible nitric oxide (iNOS) in lung tissue, inflammatory cytokines, recruitment of eosinophils to lung airways, and airway hyper-responsiveness to inhaled methacholine. These effects of ovalbumin challenge were all inhibited by pretreatment of mice with curcumin. Furthermore, supplementation with curcumin in the A549 human airway epithelial cells decreased iNOS and NO production induced by IFN-γ. These findings show that curcumin may be useful as an adjuvant therapy for airway inflammation through suppression of iNOS and NO. 相似文献
237.
Shyny Koshy Redwan Huq Mark R. Tanner Mustafa A. Atik Paul C. Porter Fatima S. Khan Michael W. Pennington Nicola A. Hanania David B. Corry Christine Beeton 《The Journal of biological chemistry》2014,289(18):12623-12632
Allergic asthma is a chronic inflammatory disease of the airways. Of the different lower airway-infiltrating immune cells that participate in asthma, T lymphocytes that produce Th2 cytokines play important roles in pathogenesis. These T cells are mainly fully differentiated CCR7− effector memory T (TEM) cells. Targeting TEM cells without affecting CCR7+ naïve and central memory (TCM) cells has the potential of treating TEM-mediated diseases, such as asthma, without inducing generalized immunosuppression. The voltage-gated KV1.3 potassium channel is a target for preferential inhibition of TEM cells. Here, we investigated the effects of ShK-186, a selective KV1.3 channel blocker, for the treatment of asthma. A significant proportion of T lymphocytes in the lower airways of subjects with asthma expressed high levels of KV1.3 channels. ShK-186 inhibited the allergen-induced activation of peripheral blood T cells from those subjects. Immunization of F344 rats against ovalbumin followed by intranasal challenges with ovalbumin induced airway hyper-reactivity, which was reduced by the administration of ShK-186. ShK-186 also reduced total immune infiltrates in the bronchoalveolar lavage and number of infiltrating lymphocytes, eosinophils, and neutrophils assessed by differential counts. Rats with the ovalbumin-induced model of asthma had elevated levels of the Th2 cytokines IL-4, IL-5, and IL-13 measured by ELISA in their bronchoalveolar lavage fluids. ShK-186 administration reduced levels of IL-4 and IL-5 and induced an increase in the production of IL-10. Finally, ShK-186 inhibited the proliferation of lung-infiltrating ovalbumin-specific T cells. Our results suggest that KV1.3 channels represent effective targets for the treatment of allergic asthma. 相似文献
238.
Two new compounds, named as (3R)-5,7-dihydroxy-3-isopropyl-3-methylisochroman-1-one (1), and (1R,3R,4S)-1-(4′-methyl-phenyl)-3,4-dihydro-3,4-dimethyl-1H-2-benzopyran-5,6,8-triol (2), were isolated from seeds of Alpinia katsumadai Hayata. Structures of compounds 1 and 2 were elucidated and determined on the basis of spectroscopic analysis. Additionally, compound 1 significantly suppressed allergic airway inflammation induced by OVA through reducing airway hyperresponsiveness. Moreover, the inflammation suppression was associated with a marked decrease in the Th2 cytokines and IgE production. 相似文献
239.
Shedding of airway epithelial cells is a common finding in asthma. In this study, the attachment of the airway epithelial cells to the basal lamina (BL) was investigated by transmission electron microscopy (TEM) of biopsies from patients with atopic asthma and healthy controls. The following parameters were quantitatively determined: the height of the epithelium and of the columnar cells, the number of basal cells per 100 microm of basal lamina, the contact surfaces of basal cells or columnar cells with the basal lamina, and between basal cells and columnar cells. In order to compare the quantitative method with previous literature data, measurements were also carried out on rat airway epithelium. Compared to the rat, the columnar cell height in the human is increased, basal cells are smaller, and there is a larger contact area between basal cells and basal lamina, as well as between basal and columnar cells. The contact area between columnar cells and basal lamina is hence less in the human airway. The contact area between columnar cells and basal lamina in asthmatics is significantly less than in healthy controls, due to larger intercellular spaces. It is concluded that attachment of columnar cells to the basal lamina occurs mainly indirectly, via desmosomal attachment to basal cells, and that direct attachment of columnar cells to the basal lamina is weakened in asthmatics. 相似文献
240.
Brass DM Yang IV Kennedy MP Whitehead GS Rutledge H Burch LH Schwartz DA 《Immunogenetics》2008,60(7):353-369
Chronic LPS inhalation causes submucosal thickening and airway narrowing. To address the hypothesis that environmental airway disease is, in part, a fibroproliferative lung disease, we exposed C57BL/6 mice daily to LPS by inhalation for up to 2 months followed by 1 month of recovery. C57BL/6 mice exposed to daily inhaled LPS had significantly enhanced mRNA expression of TGF-beta1, TIMP-1, fibronectin-1, and pro-collagen types I, III, and IV and show prominent submucosal expression of the myofibroblast markers desmin and alpha-smooth muscle actin. To further characterize global gene expression in airway fibroproliferation, we performed microarray analysis on total lung RNA from mice exposed to LPS both acutely and chronically. This analysis revealed a subset of genes typically associated with lung injury and repair, and ECM homeostasis. To further identify candidate genes specifically involved in generic fibroproliferation, we interrogated this analysis with genes induced in C57BL/6 mouse lung by bleomycin. This analysis yielded a list of 212 genes in common suggesting that there is a common subset of genes that regulate fibroproliferation in the lung independent of etiologic agent and site of injury. 相似文献