首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11970篇
  免费   1139篇
  国内免费   1759篇
  2024年   31篇
  2023年   201篇
  2022年   199篇
  2021年   320篇
  2020年   467篇
  2019年   468篇
  2018年   411篇
  2017年   443篇
  2016年   465篇
  2015年   524篇
  2014年   564篇
  2013年   853篇
  2012年   558篇
  2011年   516篇
  2010年   471篇
  2009年   604篇
  2008年   595篇
  2007年   640篇
  2006年   572篇
  2005年   503篇
  2004年   436篇
  2003年   392篇
  2002年   354篇
  2001年   345篇
  2000年   336篇
  1999年   289篇
  1998年   245篇
  1997年   244篇
  1996年   231篇
  1995年   216篇
  1994年   203篇
  1993年   220篇
  1992年   190篇
  1991年   169篇
  1990年   139篇
  1989年   155篇
  1988年   125篇
  1987年   117篇
  1986年   123篇
  1985年   153篇
  1984年   130篇
  1983年   108篇
  1982年   102篇
  1981年   89篇
  1980年   97篇
  1979年   66篇
  1978年   53篇
  1977年   41篇
  1976年   33篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 98 毫秒
911.
The International Program on Chemical Safety (IPCS), a collaborative program of the United Nations Environment Program, the International Labour Organization (ILO), and the World Health Organization (WHO), includes the Environmental Health Criteria (EHC) Program inaugurated in 1973 by WHO. These EHC are integrated evaluations of the human health and environmental risks from exposure to specific chemicals carried out by a group of international scientists. Boron (B) was evaluated at an IPCS Task Group (TG) convened in November 1996. All TGs are convened under WHO rules and procedures. These procedures relate the overall process used to prepare an EHC including transparency of the process, conflict of interest, the roles of Members and Observers, and the conduct of the TG. The scope and purpose of an EHC, for an element such as B, and its possible role in national and international chemical safety programs will be discussed. In the early 1990s, countries asked that IPCS request TGs to prepare, where data permit, health-based guidance values (GVs) (both total daily intake and to recommend health-based guidelines for various environmental media). This final evaluation in an EHC reflects the collective consensus view of the TG Members. To foster the use of consistent methodology by TGs, IPCS prepared in 1994 an EHC on the methodology for the preparation of GVs for human exposure limits (EHC 170). In developing their final evaluation, TGs have been asked to consider using this methodology. This was done by the TG on B, and a total daily intake for humans of 0.4 mg/kg body wt was derived from animal studies of reproductive and developmental effects in rodents and pharmacokinetic data from both animals and humans. The application of the methodology described in EHC 170 regarding choice of critical effect and uncertainty factors will be discussed.  相似文献   
912.
The ability to predict the effects of climate change on trace gas fluxes requires a knowledge of microbial temperature responses. However, the response of a microbial community to temperature in a given substrate may be complicated by its thermal history. To examine the effect of sequentially changing temperature on methane and carbon dioxide production in different peat types, we incubated anaerobic peat samples from 3 types of northern peatlands, a bog, a sedge fen and a cedar swamp, in both rising and falling temperature regimes. Graphic and statistical comparisons of the different temperature regimes suggest hysteresis in microbial response to temperature, although the absolute rates at any given temperature often did not differ. Where regressions for temperature response (Arrhenius plots) were significant, they generally differed between temperature regimes. The greatest differences among treatments occurred during the first half of the 40-d incubation. Increases in carbon dioxide production were similar across all peat types, but methanogenesis varied widely: methane production was uniformly low in the bog peat but increased sharply with temperature in the other two peat types. The complicating effect of history or chronology on substrate responses to environmental stimuli may restrain our ability to model the responses of complex systems to changing conditions.  相似文献   
913.
The lesser mouse lemur, a small Malagasy primate, is exposed to strong seasonal variations in ambient temperature and food availability in its natural habitat. To face these environmental constraints, this nocturnal primate exhibits biological seasonal rhythms that are photoperiodically driven. To determine the role of daylength on thermoregulatory responses to changes in ambient temperature, evaporative water loss (EWL), body temperature (T b) and oxygen consumption, measured as resting metabolic rate (RMR), were measured in response to ambient temperatures ranging from 5 °C to 35 °C, in eight males exposed to either short (10L:14D) or long (14L:10D) daylengths in controlled captive conditions. In both photoperiods, EWL, T b and RMR were significantly modified by ambient temperatures. Exposure to ambient temperatures below 25 °C was associated with a decrease in T b and an increase in RMR, whereas EWL remained constant. Heat exposure caused an increase in T b and heat loss through evaporative pathways. Thermoregulatory responses to changes in ambient temperature significantly differed according to daylength. Daily variations in T b and EWL were characterized by high values during the night. During the diurnal rest, lower values were found and a phase of heterothermia occurred in the early morning followed by a spontaneous rewarming. The amplitude of T b decrease with or without the occurrence of torpor (T b < 33 °C) was dependent on both ambient temperature and photoperiod. This would support the hypothesis of advanced thermoregulatory processes in mouse lemurs in response to selective environmental pressure, the major external cue being photoperiodic variations. Accepted: 4 August 1998  相似文献   
914.
温度对红点唇瓢虫实验种群的影响   总被引:4,自引:0,他引:4  
在7种温度下测定了红点唇瓢虫(Chilocorus kuwanae Silvestri)发育速率,并求得各虫态的发育起点温度和有效积温。其发育速率与温度的关系能很好地用王如松等(1982)提出的模型进行拟合。由此模型估计出最低、最高临界温度和最适发育温度,分别为10.42-13.01-℃、℃33.53-37.03℃和24.99-30.12℃。卵期忍耐温度变化的能力最强。4龄幼虫最弱。温度明显地影响  相似文献   
915.
The link between variation in species‐specific plant traits, larger scale patterns of productivity, and other ecosystem processes is an important focus for global change research. Understanding such linkages requires synthesis of evolutionary, biogeograpahic, and biogeochemical approaches to ecological research. Recent observations reveal several apparently paradoxical patterns across ecosystems. When compared with warmer low latitudes, ecosystems from cold northerly latitudes are described by (1) a greater temperature normalized instantaneous flux of CO2 and energy; and (2) similar annual values of gross primary production (GPP), and possibly net primary production. Recently, several authors attributed constancy in GPP to historical and abiotic factors. Here, we show that metabolic scaling theory can be used to provide an alternative ‘biotically driven’ hypothesis. The model provides a baseline for understanding how potentially adaptive variation in plant size and traits associated with metabolism and biomass production in differing biomes can influence whole‐ecosystem processes. The implication is that one cannot extrapolate leaf/lab/forest level functional responses to the globe without considering evolutionary and geographic variation in traits associated with metabolism. We test one key implication of this model – that directional and adaptive changes in metabolic and stoichiometric traits of autotrophs may mediate patterns of plant growth across broad temperature gradients. In support of our model, on average, mass‐corrected whole‐plant growth rates are not related to differences in growing season temperature or latitude. Further, we show how these changes in autotrophic physiology and nutrient content across gradients may have important implications for understanding: (i) the origin of paradoxical ecosystem behavior; (ii) the potential efficiency of whole‐ecosystem carbon dynamics as measured by the quotient of system capacities for respiration, R, and assimilation, A; and (iii) the origin of several ‘ecosystem constants’– attributes of ecological systems that apparently do not vary with temperature (and thus with latitude). Together, these results highlight the potential critical importance of community ecology and functional evolutionary/physiological ecology for understanding the role of the biosphere within the integrated earth system.  相似文献   
916.
Aphids, because of their short generation time and low developmental threshold temperatures, are an insect group expected to respond particularly strongly to environmental changes. Forty years of standardized, daily data on the abundance of flying aphids have been brought together from countries throughout Europe, through the EU Thematic Network 'EXAMINE'. Relationships between phenology, represented by date of first appearance in a year in a suction trap, of 29 aphid species and environmental data have been quantified using the residual maximum likelihood (REML) methodology. These relationships have been used with climate change scenario data to suggest plausible changes in aphid phenology. In general, the date of first record of aphid species in suction traps is expected to advance, the rate of advance varying with location and species, but averaging 8 days over the next 50 years. Strong relationships between aphid phenology and environmental variables have been found for many species, but they are notably weaker in species living all year on trees. Canonical variate analysis and principal coordinate analysis were used to determine ordinations of the 29 species on the basis of the presence/absence of explanatory variables in the REML models. There was strong discrimination between species with different life cycle strategies and between species feeding on herbs and trees, suggesting the possible value of trait-based groupings in predicting responses to environmental changes.  相似文献   
917.
Projected temperature increases under global warming could benefit southern tree species by providing them the optimal growing temperature and could be detrimental to northern species by exposing them to the supra optimal growing temperatures. This benefit-detriment trade-off could increase the competitive advantage of southern species in the northern species range and cause the increase or even dominance of southern species in the northern domain. However, the optimum temperature for photosynthesis of C3 plants may increase due to CO2 enrichment. An increase in the optimum temperature could greatly reduce the benefit-detriment effect. In this study, we coupled a forest ecosystem process model (PnET-II) and a forest GAP model (LINKAGES) with a spatially dynamic forest landscape model (LANDIS-II) to study how an optimum temperature increase could affect forest landscape response due to global warming. We simulated 360 years of forest landscape change in the Boundary Water Canoe Area (BWCA) in northern Minnesota, which is transitional between boreal and temperate forest. Our results showed that, under the control scenario of continuing the historic 1984–1993 mean climate (mainly temperature, precipitation and CO2), the BWCA will become a spruce-fir dominated boreal forest. However, under the scenario of predicted climatic change [the 2000–2099 climates are predicted by Canadian Climate Center (CCC), followed by 200 years of continuing the predicted 2090–2099 mean climate], the BWCA will become a pine-dominated mixed forest. If the optimum temperature increases gradually with [CO2] (the increase in optimum temperature is assumed to change gradually from 0 °C in year 2000 to 5 °C in year 2099 when [CO2] reaches 711 ppm and stabilizes at 5 °C after year 2099), the BWCA would remain a fir-dominated boreal forest in areas with relatively high water-holding capacity, but not in areas with relatively low water-holding capacity. Our results suggest that the [CO2] induced increases in optimum temperature could substantially reduce forest landscape change caused by global warming. However, not all tree species would be able to successfully adapt to future warming as predicted by CCC, regardless of optimum temperature acclimations.  相似文献   
918.
Acclimation of plant respiration rates (R) to climate warming is highly variable and many results appear contradictory. We tested the recently suggested hypotheses that pre‐existing, long‐lived leaves should exhibit a relatively limited ability for R to acclimate to climate warming, and that acclimation would occur via changes in the short‐term temperature sensitivity of respiration. Seedlings of a subalpine, evergreen tree species (Eucalyptus pauciflora) were grown under naturally fluctuating conditions within its natural distribution. We used a free air temperature increase (FATI) system of infra‐red ceramic lamps to raise night‐time leaf temperatures by 0.3±0.1, 1.3±0.1, and 2.2±0.1 °C above ambient for 1 year. Light‐saturated assimilation rates and plant growth did not change with nocturnal FATI treatments. Leaf R measured at prevailing temperatures did not differ between FATI treatments. Within each FATI treatment, nocturnal leaf R was highly sensitive to artificial temperature changes within minutes, and also correlated strongly with natural nocturnal and seasonal temperature variation. The corresponding values of Q10 of R varied according to time scale of measurements, but did not vary between FATI treatments. Instead, acclimation of R to nocturnal FATI occurred through changes in the base rate of respiration.  相似文献   
919.
The ability to predict C cycle responses to temperature changes depends on the accurate representation of temperature sensitivity (Q10) of soil organic matter (SOM) decomposition in C models for different C pools and soil depths. Theoretically, Q10 of SOM decomposition is determined by SOM quality and availability (referred to here as SOM protection). Here, we focus on the role of SOM protection in attenuating the intrinsic, SOM quality dependent Q10. To assess the separate effects of SOM quality and protection, we incubated topsoil and subsoil samples characterized by differences in SOM protection under optimum moisture conditions at 25 °C and 35 °C. Although lower SOM quality in the subsoil should lead to a higher Q10 according to kinetic theory, we observed a much lower overall temperature response in subsoil compared with the topsoil. Q10 values determined for respired SOM fractions of decreasing lability within the topsoil increased from 1.9 for the most labile to 3.8 for the least labile respired SOM, whereas corresponding Q10 values for the subsoil did not show this trend (Q10 between 1.4 and 0.9). These results indicate the existence of a limiting factor that attenuates the intrinsic effect of SOM quality on Q10 in the subsoil. A parallel incubation experiment of 13C‐labeled plant material added to top‐ and subsoil showed that decomposition of an unprotected C substrate of equal quality responds similarly to temperature changes in top‐ and subsoil. This further confirms that the attenuating effect on Q10 in the subsoil originates from SOM protection rather than from microbial properties or other nutrient limitations. In conclusion, we found experimental evidence that SOM protection can attenuate the intrinsic Q10 of SOM decomposition.  相似文献   
920.
The abiotic conditions required for eradication of Polymyxa betae, the vector of Beet necrotic yellow vein virus in sugar beet, were investigated. Survival of resting spores of P. betae was determined under aerobic (30 min, 4 days and 21 days) and anaerobic (4 days) conditions under several temperature regimes in a water suspension and in leachate extracted from an aerobic compost heap. In water under aerobic conditions the lethal temperature was 60, 55 and 40°C for exposure times of 30 min, 4 days and 21 days, respectively. The effect of compost leachate and/or anaerobic conditions on survival of P. betae depended on temperature. After incubation for 4 days at 20°C, no significant effects of anaerobic conditions or leachate on the survival of P. betae were found. However, at 40°C for 4 days under anaerobic conditions, survival of P. betae was significantly lower than survival under aerobic conditions in water as well as in leachate. In leachate taken from an aerobic compost heap, aerobically incubated at 40°C for 4 days, survival of P. betae was significantly lower than survival in water at the same temperature. As anaerobic spots are prevalent in aerobic compost heaps, especially during the thermophilic phase, actual inactivation temperatures under composting conditions are likely to be lower than the temperatures we found for eradication in water under aerobic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号