首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8819篇
  免费   1059篇
  国内免费   102篇
  9980篇
  2024年   15篇
  2023年   192篇
  2022年   180篇
  2021年   292篇
  2020年   363篇
  2019年   426篇
  2018年   390篇
  2017年   347篇
  2016年   306篇
  2015年   369篇
  2014年   441篇
  2013年   559篇
  2012年   283篇
  2011年   364篇
  2010年   284篇
  2009年   439篇
  2008年   482篇
  2007年   390篇
  2006年   459篇
  2005年   396篇
  2004年   362篇
  2003年   339篇
  2002年   266篇
  2001年   164篇
  2000年   170篇
  1999年   185篇
  1998年   167篇
  1997年   159篇
  1996年   144篇
  1995年   116篇
  1994年   102篇
  1993年   91篇
  1992年   98篇
  1991年   85篇
  1990年   65篇
  1989年   75篇
  1988年   63篇
  1987年   58篇
  1986年   41篇
  1985年   59篇
  1984年   47篇
  1983年   20篇
  1982年   36篇
  1981年   25篇
  1980年   19篇
  1979年   20篇
  1978年   4篇
  1977年   8篇
  1976年   6篇
  1973年   4篇
排序方式: 共有9980条查询结果,搜索用时 10 毫秒
991.
Realistic functional responses are required for accurate model predictions at the community level. However, controversy remains regarding which types of dependencies need to be included in functional response models. Several studies have shown an effect of very high predator densities on per capita predation rates, but it is unclear whether this predator dependence is also important at low predator densities. We fit integrated functional response models to predation data from 4-h experiments where we had varied both predator and prey densities. Using an information theoretic approach we show that the best-fit model includes moderate predator dependence, which was equally strong even at low predator densities. The best fits of Beddington–DeAngelis and Arditi–Akçakaya functional responses were closely followed by the fit of the Arditi–Ginzburg model. A Holling type III functional response did not describe the data well. In addition, independent behavioral observations revealed high encounter rates between predators. We quantified the number of encounters between predators and the time the focal predator spent interacting with other individuals per encounter. This time “wasted” on conspecifics reduced the total time available for foraging and may therefore account for lower predation rates at higher predator densities. Our findings imply that ecological theory needs to take realistic levels of predator dependence into account.  相似文献   
992.
Translocation of negatively charged ions across cell membranes by ion pumps raises the question as to how protein interactions control the location and dynamics of the ion. Here we address this question by performing extensive molecular dynamics simulations of wild type and mutant halorhodopsin, a seven-helical transmembrane protein that translocates chloride ions upon light absorption. We find that inter-helical hydrogen bonds mediated by a key arginine group largely govern the dynamics of the protein and water groups coordinating the chloride ion.  相似文献   
993.
An automated docking procedure was used to study binding of a series of δ-selective ligands to three models of the δ-opioid receptor. These models are thought to represent the three ligand-specific receptor conformations. Docking results are in agreement with point mutation studies and suggest that different ligands—agonists and antagonists—may bind to the same binding site under different receptor conformations. Docking to different receptor models (conformations) also suggests that by changing to a receptor-specific conformation, the receptor may open or close different binding sites to other ligands. Figure  Ligands 5 (green) and 6 (orange) in bindingpocket BP1 of the R1 δ-opioid receptor model  相似文献   
994.
Characterization of protein-protein interactions that are critical to the specific function of many biological systems has become a primary goal of structural biology research. Analysis of these interactions by structural techniques is, however, challenging due to inherent limitations of the techniques and because many of the interactions are transient, and suitable complexes are difficult to isolate. In particular, structural studies of large protein complexes by traditional solution NMR methods are difficult due to a priori requirement of extensive assignments and a large number of intermolecular restraints for the complex. An approach overcoming some of these challenges by utilizing orientational restraints from residual dipolar couplings collected on solution NMR samples is presented. The approach exploits existing structures of individual components, including the symmetry properties of some of these structures, to assemble rapidly models for relatively large protein-protein complexes. An application is illustrated with a 95 kDa homotrimeric complex of the acyltransferase protein, LpxA (UDP-N-acetylglucosamine acyltransferase), and acyl carrier protein. LpxA catalyzes the first step in the biosynthesis of the lipid A component of lipopolysaccharide in Gram-negative bacteria. The structural model generated for this complex can be useful in the design of new anti-bacterial agents that inhibit the biosynthesis of lipid A.  相似文献   
995.
Phosphorylation of phenylalanine hydroxylase (PAH) at Ser16 by cAMP-dependent protein kinase increases the basal activity of the enzyme and its resistance to tryptic proteolysis. The modeled structures of the full-length phosphorylated and unphosphorylated enzyme were subjected to molecular dynamics simulations, and we analyzed the energy of charge-charge interactions for individual ionizable residues in the final structures. These calculations showed that the conformational changes induced by incorporation of phosphate were localized and limited mostly to the region around the phosphoserine (Arg13-Asp17) and a region around the active site in the catalytic domain that includes residues involved in the binding of the iron and the substrate L-Phe (Arg270 and His285). The absence of a generalized conformational change was confirmed by differential scanning calorimetry, thermal-dependent circular dichroism, fluorescence spectroscopy, and limited chymotryptic proteolysis of the phosphorylated and unphosphorylated PAH. Our results explain the effect of phosphorylation of PAH on both the resistance to proteolysis specifically by trypsin-like enzymes and on the increase in catalytic efficiency.  相似文献   
996.
997.
998.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a ''donor'' luciferase enzyme to an ''acceptor'' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.  相似文献   
999.
1. In nature, several parasitoid species often exploit the same stages of a common herbivore host species and are able to coexist despite competitive interactions amongst them. Less is known about the direct effects of resource quality on intrinsic interactions between immature parasitoid stages. The present study is based on the hypothesis that variation in the quality or type of plant resources on which the parasitoids indirectly develop may be complementary and thus facilitate niche segregation favouring different parasitoids in intrinsic competition under different dietary regimes. 2. The present study investigated whether two herbivore species, the cabbage butterflies Pieris brassicae and Pieris rapae (Pieridae), and the quality of two important food plants, Brassica oleracea and Brassica nigra (Brassicaceae), affect the outcome of intrinsic competition between their primary larval endoparasitoids, the gregarious Cotesia glomerata (Braconidae) and the solitary Hyposoter ebeninus (Ichneumonidae). 3. Hyposoter ebeninus is generally an intrinsically superior competitor over C. glomerata. However, C. glomerata survived more antagonistic encounters with H. ebeninus when both developed in P. brassicae rather than in P. rapae caterpillars, and while its host was feeding on B. nigra rather than B. oleracea. Moreover, H. ebeninus benefitted from competition by its higher survival in multiparasitised hosts. 4. These results show that both plant and herbivore species mediate the battleground on which competitive interactions between parasitoids are played out and may affect the outcomes of these interactions in ways that enable parasitoids to segregate their niches. This in turn may promote coexistence among parasitoid species that are associated with the same herbivore host.  相似文献   
1000.
During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N‐fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin‐adsorbed N and soil extractable P in the top 10‐cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P‐limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号