首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   20篇
  国内免费   10篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   8篇
  2020年   9篇
  2019年   10篇
  2018年   15篇
  2017年   13篇
  2016年   15篇
  2015年   14篇
  2014年   31篇
  2013年   40篇
  2012年   11篇
  2011年   14篇
  2010年   10篇
  2009年   17篇
  2008年   24篇
  2007年   12篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   12篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   7篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
11.
12.
Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young''s modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young''s modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.  相似文献   
13.
A fundamental understanding of biofilm mechanical stability is critical in order to describe detachment and develop biofouling control strategies. It is thus important to characterise the elastic deformation and flow behaviour of the biofilm under different modes of applied force. In this study, the mechanical properties of a mature wastewater biofilm were investigated with methods including macroscale compression and microscale indentation using atomic force microscopy (AFM). The mature biofilm was found to be mechanically isotropic at the macroscale level as its mechanical properties did not depend on the scales and modes of loading. However, the biofilm showed a tendency for mechanical inhomogeneity at the microscale level as indentation progressed deeper into the matrix. Moreover, it was observed that the adhesion force had a significant influence on the elastic properties of the biofilm at the surface, subjected to microscale tensile loading. These results are expected to inform a damage-based model for biofilm detachment.  相似文献   
14.
Abnormal mechanical loading may trigger cartilage degeneration associated with osteoarthritis. Tissue response to load has been the subject of several in vitro studies. However, simple stimuli were often applied, not fully mimicking the complex in vivo conditions. Therefore, a rolling/plowing explant test system (RPETS) was developed to replicate the combined in vivo loading patterns. In this work we investigated the mechanical behavior of bovine nasal septum (BNS) cartilage, selected as tissue approximation for experiments with RPETS, under static and dynamic loading. Biphasic material properties were determined and compared with those of other cartilaginous tissues. Furthermore, dynamic loading in plowing modality was performed to determine dynamic response and experimental results were compared with analytical models and Finite Elements (FE) computations. Results showed that BNS cartilage can be modeled as a biphasic material with Young's modulus E=2.03±0.7 MPa, aggregate modulus HA=2.35±0.7 MPa, Poisson's ratio ν=0.24±0.07, and constant hydraulic permeability k0=3.0±1.3×10−15 m4 (N s)−1. Furthermore, dynamic analysis showed that plowing induces macroscopic reactions in the tissue, proportionally to the applied loading force. The comparison among analytical, FE analysis and experimental results showed that predicted tangential forces and sample deformation lay in the range of variation of experimental results for one specific experimental condition. In conclusion, mechanical properties of BNS cartilage under both static and dynamic compression were assessed, showing that this tissue behave as a biphasic material and has a viscoelastic response to dynamic forces.  相似文献   
15.
Ascorbyl palmitate (ASC16) is an anionic amphiphilic molecule of pharmacological interest due to its antioxidant properties. We found that ASC16 strongly interacted with model membranes. ASC16 penetrated phospholipid monolayers, with a cutoff near the theoretical surface pressure limit. The presence of a lipid film at the interface favored ASC16 insertion compared with a bare air/water surface. The adsorption and penetration time curves showed a biphasic behavior: the first rapid peak evidenced a fast adsorption of charged ASC16 molecules to the interface that promoted a lowering of surface pH, thus partially neutralizing and compacting the film. The second rise represented an approach to the equilibrium between the ASC16 molecules in the subphase and the surface monolayer, whose kinetics depended on the ionization state of the film. Based on the Langmuir dimiristoylphosphatidylcholine + ASC16 monolayer data, we estimated an ASC16 partition coefficient to dimiristoylphosphatidylcholine monolayers of 1.5 × 105 and a ΔGp = − 6.7 kcal·mol− 1. The rheological properties of the host membrane were determinant for ASC16 penetration kinetics: a fluid membrane, as provided by cholesterol, disrupted the liquid-condensed ASC16-enriched domains and favored ASC16 penetration. Subphase pH conditions affected ASC16 aggregation in bulk: the smaller structures at acidic pHs showed a faster equilibrium with the surface film than large lamellar ones. Our results revealed that the ASC16 interaction with model membranes has a highly complex regulation. The polymorphism in the ASC16 bulk aggregation added complexity to the equilibrium between the surface and subphase form of ASC16, whose understanding may shed light on the pharmacological function of this drug.  相似文献   
16.
The mixed Langmuir monolayers composed of model constituents of biological membranes, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), were investigated to provide information on the intermolecular interactions between these membrane components and the physiologically active vitamin E–α-tocopherol (TF), as well as on the phase behavior of these mixed systems. Additionally, topography of these monolayers transferred onto the mica support was investigated by the inverted metallurgical microscope. Morphological characteristics were directly observed by Brewster angle microscopy (BAM). From the surface pressure–area isotherms and the analysis of physicochemical parameters (compressibility and mean molecular area at the maximum compressibility) it was found that depending on the acyl chains saturation degree, TF has different effect on the phospholipids. In the case of DPPC, the addition of TF to the phospholipid film causes destabilization of the ordered hydrocarbon chains, while in the POPC/DOPC–TF systems, the attractive interactions are responsible for the monolayer increased stability. Thus, the results of these studies confirm the hypothesis that α-tocopherol may play a role in the stabilization of biological membranes.  相似文献   
17.
Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in situ characterization of their evolution has never been achieved at the nanoscale. It is reported here with in situ imaging, combined with density functional theory of the elastic changes of a 2D titanium carbide (Ti3C2Tx) based electrode in direction normal to the basal plane (electrode surface) during alkaline cation intercalation/extraction. 2D carbides, known as MXenes, are promising new materials for supercapacitors and various kinds of batteries, and understanding the coupling between their mechanical and electrochemical properties is therefore necessary. The results show a strong correlation between the cations content and the out‐of‐plane elastic modulus. This strategy enables identifying the preferential intercalation pathways within a single particle, which is important for understanding ionic transport in these materials.  相似文献   
18.
19.
During stretching studies, surface electromyography (sEMG) is used to ensure the passive state of the muscle, for the characterization of passive muscle mechanical properties. Different thresholds (1%, 2% or 5% of maximal) are indifferently used to set “passive state”. This study aimed to investigate the effects of a slight activity on the joint and muscle mechanical properties during stretching.The joint torque and muscle shear modulus of the triceps surae muscles were measured in fifteen healthy volunteers during ankle dorsiflexions: (i) in a “fully relaxed” state, (ii) during active conditions where participants were asked to produce an sEMG amplitude of 1%, 2% or 5% of their maximal sEMG amplitude of the triceps surae. The 1% condition was the only that did not result in significant differences in joint torque or shear modulus compared to the relaxed condition. In the 2% condition, increases in joint torque were found at 80% of the maximal angle in dorsiflexion, and in the shear modulus of gastrocnemius medialis and gastrocnemius lateralis at the maximal angle in dorsiflexion. During the 5% condition, joint torque and the shear modulus of gastrocnemius medialis were higher than during relaxed condition at angles larger than 40% of maximal angle in dorsiflexion. The results provide new insights on the thresholds that should be considered for the design of stretching studies. A threshold of 1% seems much more appropriate than a 2% or 5% threshold in healthy participants. Further studies are required to define similar thresholds for patients.  相似文献   
20.
The purpose of this study was to examine the viscoelastic properties of topical creams containing various concentrations of microcrystalline cellulose and sodium carboxymethyl cellulose (Avicel(R) CL-611) as a stabilizer. Avicel CL-611 was used at 4 different levels (1%, 2%, 4%, and 6% dispersion) to prepare topical creams, and hydrocortisone acetate was used as a model drug. The viscoelastic properties such as loss modulus (G"), storage modulus (G'), and loss tangent (tan delta) of these creams were measured using a TA Instruments AR 1000 Rheometer and compared to a commercially available formulation. Continuous flow test to determine the yield stress and thixotropic behavior, and dynamic mechanical tests for determining the linear viscosity time sweep data, were performed. Drug release from the various formulations was studied using an Enhancer TM Cell assembly. Formulations containing 1% and 2% Avicel CL-611 had relative viscosity, yield stress, and thixotropic values that were similar to those of the commercial formulation. The elastic modulus (G') of the 1% and 2% formulation was relatively high and did not cross the loss modulus (G"), indicating that the gels were strong. In the commercial formulation, G' increased after preshearing and broke down after 600 seconds. The strain sweep tests showed that for all formulations containing Avicel CL-611, the G' was above G" with a good distance between them. The gel strength and the predominance of G' can be ranked 6% > 4% > 2%. The strain profiles for the 1% and 2% formulations were similar to those of the commercial formulation. The delta values for the 1% and 2% formulations were similar, and the formulations containing 4% Avicel CL-611 had lower delta values, indicating greater elasticity. Drug release from the commercial preparation was fastest compared to the formulations prepared using Avicel CL-611, a correlation with the viscoelastic properties. It was found that viscoelastic data, especially the strain sweep profiles of products containing Avicel CL-611 1% and 2%, correlated with the commercial formulation. Rheological tests that measure the viscosity, yield stress, thixotropic behavior, other oscillatory parameters such as G' and G" are necessary tools in predicting performance of semisolids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号