全文获取类型
收费全文 | 3537篇 |
免费 | 677篇 |
国内免费 | 299篇 |
专业分类
4513篇 |
出版年
2024年 | 33篇 |
2023年 | 181篇 |
2022年 | 144篇 |
2021年 | 251篇 |
2020年 | 265篇 |
2019年 | 303篇 |
2018年 | 240篇 |
2017年 | 247篇 |
2016年 | 247篇 |
2015年 | 233篇 |
2014年 | 262篇 |
2013年 | 232篇 |
2012年 | 166篇 |
2011年 | 146篇 |
2010年 | 145篇 |
2009年 | 198篇 |
2008年 | 183篇 |
2007年 | 150篇 |
2006年 | 133篇 |
2005年 | 102篇 |
2004年 | 80篇 |
2003年 | 71篇 |
2002年 | 65篇 |
2001年 | 52篇 |
2000年 | 40篇 |
1999年 | 47篇 |
1998年 | 34篇 |
1997年 | 29篇 |
1996年 | 27篇 |
1995年 | 18篇 |
1994年 | 22篇 |
1993年 | 12篇 |
1992年 | 12篇 |
1991年 | 18篇 |
1990年 | 12篇 |
1989年 | 13篇 |
1988年 | 11篇 |
1987年 | 8篇 |
1986年 | 12篇 |
1985年 | 9篇 |
1984年 | 8篇 |
1983年 | 6篇 |
1982年 | 9篇 |
1981年 | 10篇 |
1980年 | 6篇 |
1979年 | 8篇 |
1978年 | 3篇 |
1976年 | 3篇 |
1974年 | 2篇 |
1958年 | 3篇 |
排序方式: 共有4513条查询结果,搜索用时 62 毫秒
21.
P. S. Jourdan E. D. Earle M. A. Mutschler 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,78(2):271-279
Summary Somatic hybridization between Brassica oleracea ssp. botrytis (cauliflower, 2n=18), carrying the Ogura (R1) male-sterile cytoplasm and B. napus (2n= 38), carrying a male-fertile, atrazine-resistant (ATR) cytoplasm, yielded three hybrids (2n=56) and six cauliflower cybrids (2n=18), which were selected for resistance to the herbicide in vitro. The hybrids and cybrids were male fertile and self-compatible. They contained both chloroplasts and mitochondria from the ATR cytoplasm. We found no evidence for mtDNA recombination in any of the regenerated plants. Selfed progeny of the B. oleracea atrazine-resistant cybrids were evaluated for tolerance to the herbicide in the field. Resistant plants exposed to 0.56–4.48 kg/ha (0.5–4.0 pounds/acre) atrazine in the soil showed no damage at any herbicide level, whereas plants of a susceptible alloplasmic line were severely damaged at the lowest level of herbicide application and killed at all higher levels. These atrazine-resistant cauliflower may have potential horticultural use, especially in fields where atrazine carry over is a serious problem. 相似文献
22.
Various approaches have been developed to define conservation units for plant and animal species. In this study we combined
nuclear microsatellites (from a previous published study) and chloroplast microsatellites (assessed in the present study),
leaf and seed morphology traits and abiotic variables (climate and soil) to define evolutionary significant units (ESU) of
Santalum austrocaledonicum, a tree species growing in New Caledonia. Results for chloroplast microsatellites showed that the total population heterozygosity
was␣high, (H
cp = 0.84) but varied between islands. Differentiation was strong in the total population (F
stcp = 0.66) but also within the main island Grande Terre (F
stcp = 0.73) and within Iles Loyauté (F
stcp = 0.52), highlighting a limited gene flow between populations. These results confirmed those obtained with nuclear microsatellites.
The cluster analysis on molecular markers discriminated two main groups constituted by the populations of Grande Terre and
the populations of Iles Loyauté. A principal component analysis of leaf and seed morphology traits singled out the populations
of Iles Loyauté and the western populations of Grande Terre. Quantitative genetic analyses showed that the variation between
populations was under genetic control (broad sense heritability close to 80%). A high correlation between rainfall and morphological
traits suggested an impact of climate on this variation. The integration of these results allows to define two ESUs, one corresponding
to Grande Terre and Ile des Pins and the other the Iles Loyauté archipelago. This study stresses the need to restore some
populations of Grande Terre that are currently threatened by their small size. 相似文献
23.
S. H. Forbes F. W. Allendorf 《Evolution; international journal of organic evolution》1991,45(6):1350-1359
Efforts to detect effects of cytoplasmic genes are confounded by the problem of partitioning nuclear and cytoplasmic effects. In this study we test for effects of mtDNA haplotype on development in hybrid populations of cutthroat trout (Oncorhynchus clarki) with randomly associated nuclear and mtDNA genotypes. We have previously described several intraspecific hybrid swarms formed by interbreeding of westslope cutthroat trout (O. c. lewisi) and Yellowstone cutthroat trout (O. c. bouvieri). Genetic distance between these subspecies is high (Nei's D = 0.30; mtDNA P = 0.02), and diagnostic alleles at multiple nuclear loci and two distinct mtDNA haplotypes are present in the hybrids. Historical associations between alleles at nuclear loci and between cytotypes and nuclear alleles have largely decayed. We test for differences in meristic characters between fish with alternate mtDNA haplotypes. Counts and fluctuating bilateral asymmetry for these characters have been previously shown to be sensitive indicators of genetic differences that affect development. No differences were found between mtDNA types in meristic counts or fluctuating asymmetry. Therefore, the alternate mtDNA haplotypes had no detectable effect on development as measured by meristic counts in these hybrid populations. However, diagnostic alleles at one nuclear allozyme locus (CK-CI) were associated with several fin ray counts. 相似文献
24.
Liliana Marii Gheorghe Chiriac 《Acta Botanica Sinica》2009,(5):476-488
The effect of virus-host interactions on subsequent generations is poorly understood. The evaluation of the effects of viral infection on inheritance of quantitative traits in the progeny of infected plants and elucidation of a possible relationship between chiasma frequency in the infected plants and variability of traits in the progeny were investigated. The current study involved genotypes of four intraspecific hybrids of tomato (Solanum lycopersicum L.), their parental forms and two additional cultivars. Used as infection were the tobacco mosaic virus (TMV) and potato virus X (PVX). The consequences of the effect of viral infection were evaluated based on chromosome pairing in diakinesis and/or by examining quantitative and qualitative traits in the progeny of the infected tomato plants. Tomato plants infected with TMV + PVX were found to differ in chiasma frequency per pollen mother cell or per bivalent. Deviations have been observed for genotypes of both F1 hybrids and cultivars. At the same time, differences in mean values of the traits under study have only been found for progeny populations (F2-F4) derived from virus-infected F1 hybrids, but not in the case of progeny of the infected cultivars. The rate of recombinants combining traits of both parents increased significantly (2.22-8.24 times) in progeny populations of hybrids infected with TMV+PVX. The above suggests that the observed effects could be the result of modification of recombination frequencies that can be manifested in heterozygous hybrids and make small contributions to variability in cases of 'homozygous' tomato genotypes (i.e. cultivars). 相似文献
25.
Hameed Gul Mengya Qian Mohammad G. Arabzai Tianhui Huang Qiannan Ma Fangyu Xing Wan Cao Tingting Liu Hong Duan Qianlin Xiao Zhizhai Liu 《Phyton》2022,91(7):1429-1443
Kernel size-related traits, including kernel length, kernel width, and kernel thickness, are critical components in determining yield and kernel quality in maize (Zea mays L.). Dissecting the phenotypic characteristics of these traits, and discovering the candidate chromosomal regions for these traits, are of potential importance for maize yield and quality improvement. In this study, a total of 139 F2:3 family lines derived from EHel and B73, a distinct line with extremely low ear height (EHel), was used for phenotyping and QTL mapping of three kernel size-related traits, including 10-kernel length (KL), 10-kernel width (KWid), and 10-kernel thickness (KT). The results showed that only one QTL for KWid, i.e., qKWid9 on Chr9, with a phenotypic variation explained (PVE) of 13.4% was detected between SNPs of AX-86298371 and AX-86298372, while no QTLs were detected for KL and KT across all 10 chromosomes. Four bulked groups of family lines, i.e., Groups I to IV, were constructed with F2:3 family lines according to the phenotypic comparisons of KWid between EHel and B73. Among these four groups, Group I possessed a significantly lower KWid than EHel (P = 0.0455), Group II was similar to EHel (P = 0.34), while both Group III and Group IV were statistically higher than EHel (P < 0.05). Besides, except Group IV exhibited a similar KWid to B73 (P = 0.11), KWid of Groups I to III were statistically lower than B73 (P < 0.00). By comparing the bulked genotypes of the four groups to EHel and B73, a stable chromosomal region on Chr9 between SNPs of AX-86298372 to AX-86263154, entirely covered by qKWid9, was identified to link KWid with the positive allele of increasing phenotypic effect to KWid from B73, similar to that of qKWid9. A large amount of enzyme activity and macromolecule binding-related genes were annotated within this chromosomal region, suggesting qKWid9 as a potential QTL for KWid in maize. 相似文献
26.
27.
David Timerman Spencer C.H. Barrett 《Biological reviews of the Cambridge Philosophical Society》2021,96(5):2146-2163
Evolutionary transitions from animal to wind pollination have occurred repeatedly during the history of the angiosperms, but the selective mechanisms remain elusive. Here, we propose that knowledge of pollen release biomechanics is critical for understanding the ecological and evolutionary processes underpinning this shift in pollination mode. Pollen release is the critical first stage of wind pollination (anemophily) and stamen properties are therefore likely to be under strong selection early in the transition. We describe current understanding of pollen release biomechanics to provide insights on the phenotypic and ecological drivers of wind pollination. Pollen release occurs when detachment forces dominate resistive forces retaining pollen within anthers. Detachment forces can be active or passive depending on whether they require energy input from the environment. Passive release is more widespread in anemophilous species and involves processes driven by steady or unsteady aerodynamic forces or turbulence-induced vibrations that shake pollen from anthers. We review empirical and theoretical studies suggesting that stamen vibration is likely to be a key mechanism of pollen release. The vibration response is governed by morphological and biomechanical properties of stamens, which may undergo divergent selection in the presence or absence of pollinators. Resistive forces have rarely been investigated for pollen within anthers, but are probably sensitive to environmental conditions and depend on flower age, varying systematically between animal- and wind-pollinated species. Animal and wind pollination are traditionally viewed as dichotomous alternatives because they are usually associated with strikingly different pollination syndromes. But this perspective has diverted attention from subtler, continuously varying traits which mediate the fluid dynamic process of pollen release. Reinterpreting the flower as a biomechanical entity that responds to fluctuating environmental forces may provide a promising way forward. We conclude by identifying several profitable areas for future research to obtain deeper insight into the evolution of wind pollination. 相似文献
28.
Nest building can represent an energetically costly activity for a variety of animal taxa. Besides, the determinants of within‐species variation in the design of nests, notably with respect to natural and sexual selection, are still insufficiently documented. Based on an observational study, we examined the influence of nesting conditions (nesting‐support quality, colony, laying date, and year) on male‐built nest volume and also its potential role as a postmating sexually selected display in the whiskered tern Chlidonias hybrida. This tern species is a monogamous colonial bird with obligate biparental care breeding on aquatic vegetation. Hence, large nesting platforms are expected to be a selective advantage because they would better withstand adverse environmental conditions and provide a secure structure for eggs. Nest size may also serve as a postmating sexual trait, and variation in egg production would be positively associated with nest size. We found that nest volume was adjusted to different environmental cues. A positive relationship was found between nest volume and nesting‐support quality, indicating that the leaf density of white waterlily is essential for nest stability. Variation in nest volume was not correlated to colony size but varied among colonies and years. Male‐built nest volume was also positively associated with mean egg volume per clutch but not with clutch size. The fitness consequences of building a large nest are yet to be studied, and additional investigations are recommended to better understand whether the activity of males early during breeding season (e.g., nest building and courtship feeding performance) really serves as postmating sexually selected signals. 相似文献
29.
《Fungal biology》2020,124(10):903-913
Although water is essential for photosynthetic activation in lichens, rates of vapor uptake and activation in humid air, which likely influence their niche preferences and distribution ranges, are insufficiently known. This study simultaneously quantifies rehydration kinetics and PSII reactivation in sympatric, yet morphologically and functionally distinct cephalolichens (Lobaria amplissima, Lobaria pulmonaria, Lobaria virens). High-temporal resolution monitoring of rehydrating thalli by automatic weighing combined with chlorophyll fluorescence imaging of maximal PSII efficiency (FV/FM) was applied to determine species-specific rates of vapor uptake and photosynthetic activation. The thin and loosely attached growth form of L. pulmonaria rehydrates and reactivates faster in humid air than the thick L. amplissima, with L. virens in between. This flexible hydration strategy is consistent with L. pulmonaria’s wide geographical distribution stretching from rainforests to continental forests. By contrast, the thick and resupinate L. amplissima reactivates slowly in humid air but stores much water when provided in abundance. This prolongs active periods after rain, which could represent an advantage where abundant rain and stem flow alternates with long-lasting drying. Understanding links between morphological traits and functional responses, and their ecological implications for species at risk, is crucial to conservation planning and for modelling populations under various climate scenarios. 相似文献
30.
Jingyi Ding Samantha K. Travers Manuel Delgado‐Baquerizo David J. Eldridge 《Global Change Biology》2020,26(2):709-720
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate. 相似文献