首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   4篇
  国内免费   3篇
  147篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   10篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   13篇
  2008年   8篇
  2007年   5篇
  2006年   7篇
  2005年   9篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1975年   1篇
  1974年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
91.
Methanobacteriumthermoautotrophicum cells, incubated anaerobically under H2 in 0.1 M KCl or 0.1 M NaCl, above pH 7.5, are interior acid with respect to the incubation medium. The pH gradient thus established can be discharged by either carbonyl cyanide m-chlorophenylhydrazone or valinomycin at high concentration (17μM). In these cells, which actively synthesize CH4 from CO2 and H2, methanogenesis is strongly inhibited when the pH gradient is discharged.  相似文献   
92.
Subunit II (CyoA) of cytochrome bo3 oxidase, which spans the inner membrane twice in bacteria, has several unusual features in membrane biogenesis. It is synthesized with an amino-terminal cleavable signal peptide. In addition, distinct pathways are used to insert the two ends of the protein. The amino-terminal domain is inserted by the YidC pathway whereas the large carboxyl-terminal domain is translocated by the SecYEG pathway. Insertion of the protein is also proton motive force (pmf)-independent. Here we examined the topogenic sequence requirements and mechanism of insertion of CyoA in bacteria. We find that both the signal peptide and the first membrane-spanning region are required for insertion of the amino-terminal periplasmic loop. The pmf-independence of insertion of the first periplasmic loop is due to the loop's neutral net charge. We observe also that the introduction of negatively charged residues into the periplasmic loop makes insertion pmf dependent, whereas the addition of positively charged residues prevents insertion unless the pmf is abolished. Insertion of the carboxyl-terminal domain in the full-length CyoA occurs by a sequential mechanism even when the CyoA amino and carboxyl-terminal domains are swapped with other domains. However, when a long spacer peptide is added to increase the distance between the amino-terminal and carboxyl-terminal domains, insertion no longer occurs by a sequential mechanism.  相似文献   
93.
Nikolaos E. Ioannidis 《BBA》2006,1757(7):821-828
Putrescine is a main polyamine found in animals, plants and microbes, but the molecular mechanism underlying its mode of action is still obscure. In vivo chlorophyll a fluorescence in tobacco leaf discs indicated that putrescine treatment affects the energization of the thylakoid membrane. Molecular dissection of the electron transport chain by biophysical and biochemical means provided new evidence that putrescine can play an important bioenergetic role acting as a cation and as a permeant natural buffer. We demonstrate that putrescine increases chemiosmotic ATP synthesis more than 70%. Also a regulation of the energy outcome by small changes in putrescine pool under the same photonic environment (i.e., photosynthetically active radiation) is shown. The proposed molecular mechanism has at least four conserved features: (i) presence of a membrane barrier, (ii) a proton-driven ATPase, (iii) a ΔpH and (iv) a pool of putrescine.  相似文献   
94.
Proton motive force (pmf) across thylakoid membranes is not only for harnessing solar energy for photosynthetic CO2 fixation, but also for triggering feedback regulation of photosystem II antenna. The mechanisms for balancing these two roles of the proton circuit under the long-term environmental stress, such as prolonged drought, have been poorly understood. In this study, we report on the response of wild watermelon thylakoid 'proton circuit' to drought stress using both in vivo spectroscopy and molecular analyses of the representative photosynthetic components. Although drought stress led to enhanced proton flux via a ∼34% increase in cyclic electron flow around photosystem I (PS I), an observed ∼fivefold decrease in proton conductivity, gH+, across thylakoid membranes suggested that decreased ATP synthase activity was the major factor for sustaining elevated qE. Western blotting analyses revealed that ATP synthase content decreased significantly, suggesting that quantitative control of the complex plays a pivotal role in down-regulation of gH+. The expression level of cytochrome b 6 f complex – another key control point in photosynthesis – also declined, probably to prevent excess-reduction of PS I electron acceptors. We conclude that plant acclimation to long-term environmental stress involves global changes in the photosynthetic proton circuit, in which ATP synthase represents the key control point for regulating the relationship between electron transfer and pmf.  相似文献   
95.
Vida Vambutas  Walter Bertsch 《BBA》1975,376(1):169-179
Effects of adenylates on chloroplast delayed light emission, at millisecond dark times, are inverse to the previously characterized effects of adenylates on electron transport rates. Either ADP alone or ATP alone increase intensity of delayed light, while ADP plus Pi decrease it. ADP alone requires the presence of an electron acceptor to have this effect on delayed light, but ATP does not.All three adenylate effects are abolished by uncoupling with gramicidin, by partial removal of photophosphorylation coupling factor (CF1) with EDTA, and by antibody to CF1. Readdition of CF1 re-established the adenylate effects in EDTA-stripped membranes. The three adenylate effects are differentially sensitive to pH, and pH differentially affected their abolition by antibody to CF1. The two adenylate effects shown in the absence of Pi are exhibited at lower adenylate concentrations than the ADP plus Pi effect, and are also less sensitive to phloridzin.These results are discussed in terms of probable adenylate effects on membrane-bound chloroplast coupling factor, CF1. At least two ADP binding sites would differ with respect to adenylate concentration for half maximal binding; pH of optimal binding capacity; phloridzin sensitivity; and functional regulation of electron transport, proton uptake, and energy storage within the membrane as measured by delayed light emission. It remains unclear whether the high affinity ADP binding site is identical to a high affinity ATP binding site on CF1.  相似文献   
96.
The ATP pool of Streptococcus cremoris in a lactose-limited chemostat depletes rapidly when lactose is consumed. The decrease of the intracellular ATP concentration parallels the dissipation of the electrochemical proton gradient. The adenylate energy charge of growing cells is 0.8 but drops rapidly to 0.2 when the cells enter the starvation phase.One of the early events of lactose starvation is a rapid increase of the pools of phosphoenolpyruvate and inorganic phosphate. The accumulation of phosphoenolpyruvate is temporarily and levels off at a much lower value than in growing cells; the accumulation of phosphate is of a more permanent nature. Despite the low PEP concentration starved cells are, after 24 h of incubation in the absence of lactose, still able to take up lactose, to synthesize ATP and to generate quickly an electrochemical proton gradient.Abbreviations PEP phosphoenolpyruvate Dedicated to Prof. Dr. Gerhart Drews on the occasion of his 60th birthday  相似文献   
97.
Washed cells of Rhodopseudomonas sphaeroides f. sp. denitrificans, prepared from cultures grown anaerobically in light with NO 3 - as the terminal acceptor, readily incorporated [14C]-proline both in light and in the dark. The proline uptake was coupled to the reduction of either NO 3 - , NO 2 - , N2O or O2. Light stimulated the accumulation of proline in these cells. The addition of NO 3 - to washed cells in light decreased the K m for proline from 40 M to 5.7 M. Proline transport was inhibited by antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide both in light and in the dark with nitrate indicating that electron transfer from both denitrification and photosynthesis are involved in this uptake. Inhibition by carbonyl cyanide-m-chlorophenyl hydrazone and 2.4-dinitrophenol indicate that proline transport is energy dependent. The H+/proline stoichiometry increased from 1 to 2.5 when the external pH was increased from 6.0 to 8.0. Under these conditions pro increased but p decreased markedly above pH 7.0.Abbreviations TPP+ Tetraphenylphosphonium bromide - EDTA ethylenediamine-tetra-acetic acid - CCCP carbonyl cyanide-m-chlorophenyl hydrazone - DNP 2,4-dinitrophenol - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - DBMIB dibromo-methyl-isopropyl-p-benzoquinone - DCCD N,N-dicyclohexylcarbodiimide  相似文献   
98.
Comparative studies over the past year have revealed two new insights into the role of neuropeptides in the evolution of social behaviors. First, across vertebrate taxa, certain neuropeptide effects appear to be gender-specific. Second, species variations in receptor gene structure can alter neuropeptide receptor distribution and thereby contribute to species differences in social behavior.  相似文献   
99.
An experimental system is described for the simultaneous measurement of components of the proton motive force and other energy-related activies in microorganisms under steady defined microaerobic conditions. Oxygen is supplied in a solution containing an O2-carrier such as myoglobin or leghaemoglobin, to a stirred reaction chamber in which a suspension of the microorganism is required aboce a membrane filter whic is pervious to the carrier. The rate of O2 consumption is regulated by the rate at which the solution is pumped through the chamber. The concentration of free O2 in the chamber and the rate of its consumption are calculated from the pumping rate and the decline in the relative oxygenation of the carrier measured spectrophotometrically in the effluent solution. The uptake by the microorganisms of radioactively labelled probes for ΔpH and Δψ is calculated following their injection into the reaction chamber and monitoring of continuously collected fractions of effluent solution, after it has passed through the spectrophometer. An example of the use of the system is given.The use of this system is advocated for many microaerobic applications since most of the measurements can be made without perturbing the steady state until the final shape of the suspension is collected.  相似文献   
100.
The crystal structures of the nucleotide-empty (AE), 5′-adenylyl-β,γ-imidodiphosphate (APNP)-bound, and ADP (ADP)-bound forms of the catalytic A subunit of the energy producer A1AO ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 Å and 2.4 Å resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the AE form, the phosphate analog SO42− binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5′-adenylyl-β,γ-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-Å structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic β subunits of F1FO ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A1AO ATP synthases, F1FO ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号