首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   8篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1984年   1篇
  1977年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
21.
We have isolated 102 polymorphic microsatellite loci from an enriched Murray cod DNA library and also assessed their amplification success in 13 native and six introduced freshwater fish species. The loci will serve the dual purpose of assessing wild population genetic structure for future conservation efforts, and for identifying markers for key quantitative trait loci important for aquaculture.  相似文献   
22.
Joma Joy 《FEBS letters》2010,584(14):3149-3152
Murray Valley encephalitis virus (MVEV) is a member of the flavivirus group, a large family of single stranded RNA viruses, which cause serious disease in all regions of the world. Its genome encodes a large polyprotein which is processed by both host proteinases and a virally encoded serine proteinase, non-structural protein 3 (NS3). NS3, an essential viral enzyme, requires another virally encoded protein cofactor, NS2B, for proteolytic activity. The cloning, expression and biochemical characterisation of a stable MVEV NS2B-NS3 fusion protein is described.  相似文献   
23.
Aim Biological invasion is a major conservation problem that is of interest to ecological science. Understanding mechanisms of invasion is a high priority, heightened by the management imperative of acting quickly after species introduction. While information about invading species’ ecology is often unavailable, species distribution data can be collected near the onset of invasion. By examining distribution patterns of exotic and native plant species at multiple spatial scales, we aim to identify the scale (of those studied) that accounts for most variability in exotic species abundance, and infer likely drivers of invasion. Location River Murray wetlands, south‐eastern Australia. Methods A nested, crossed survey design was used to determine the extent of variation in wetland plant abundance, grazing intensity and water depth at four spatial scales (reaches, wetland clumps, wetlands, wetland sections), and among three Depth‐strata. We examined responses of exotic and native species groups (grouped into terrestrial and amphibious taxa), native weeds and 10 individual species using hierarchical ANOVA. Results As a group dominated by terrestrial taxa, exotic species cover varied at reach‐, wetland‐ and section‐scales. This likely reflects differences in abiotic characteristics and propagule pressure at these scales. Groups based on native species did not vary at any scale examined. Cover of 10 species mostly varied among and within wetlands (patterns unrelated to species’ origin or functional group), but species’ responses differed, despite individual plants being similar in size. While flora mostly varied among wetlands, exotic cover varied most among reaches (26%), which was attributed to hydrological modification and human activities. Main conclusions Multi‐scale surveys can rapidly identify factors likely to affect species’ distributions and can indicate where future research should be directed. By highlighting disproportionate variation in exotic cover among reaches, this study suggests that flow regulation and human‐mediated dispersal facilitate exotic plant invasion in River Murray wetlands.  相似文献   
24.
In 2002, the neritic copepod Acartia tumida was present in the plankton of Kievka Bay from February through July at a temperature of ?1.2 to 14°C with an average population density of 6812 ind/m3 and a biomass of 532.75 mg/m3 (0.12–65.33 and 2.2–87.84% of total copepod density and biomass, respectively). The maximum population density of A. tumida (45 600 ind/m3) was recorded in the first ten-day period of April at a temperature of 2.2–3.8°C. Seasonal variations in the age and sex structure of A. tumida population were found. From February to July, A. tumida produced two generations.  相似文献   
25.
26.
We described the diet of Emydura macquarii, an omnivorous turtle from south-eastern Australia, compared its digestive performance on diets of fish or plants at two temperatures, and related how both diet and temperature affect its food selection in nature. Filamentous algae constituted 61% of the stomach content of E. macquarii. The turtles rarely fed on motile prey, but selected carrion from the lagoon bottom and terrestrial insects (Diptera, Hymenoptera and Coleoptera) trapped on the surface of the water. Digestive efficiency of E. macquarii was affected little by body temperature, in contrast to consumption rates and rates of passage which were strongly influenced by both temperature and diet. In combination, these responses resulted in a slower rate of digestion at 20 degrees C than at 30 degrees C. Digestive efficiency of E. macquarii on a herbivorous diet at 30 degrees C (49%) was about half that of turtles on a carnivorous diet (91%), but they had longer transit times (118 h on the plant diet versus 70 h). Lower consumption rates and longer mean retention times in turtles fed plants compared those fed fish relate to slower digestive processing of the plant. Rapid processing and higher consumption rates of fish by E. macquarii resulted in higher energy gains compared to turtles consuming plants (almost 100 times more energy at 30 degrees C). The laboratory results suggest that fish carrion and aquatic and terrestrial invertebrates are probably essential dietary items of E. macquarii in the wild, because its metabolic requirements cannot be met from aquatic macrophytes alone.  相似文献   
27.
Summary   The extent and intensity of European-induced changes to ecosystems in south-eastern Australia mean that remaining habitats, despite being degraded, are of high conservation value. Given the extinction of several species of native mammals in the last 160 years in the area, and conservation concerns regarding others, it is important to provide conservation managers with sufficient information to prevent further extinctions and maintain evolutionary potential of the species. A native, carnivorous marsupial, the Yellow-footed Antechinus ( Antechinus flavipes ) exists within these massively altered landscapes. We present conceptual models, derived from the literature, of persistence of populations of Yellow-footed Antechinus both before European colonization and in the 21st century. We conclude that preservation of large trees, restoration of fallen-timber volumes, spring flooding of floodplains and presence of vegetation corridors between forests should be undertaken to prevent local extinctions of Yellow-footed Antechinus. From historic and current gene flow, we identify remnant woodland and forest groupings that we consider should be managed as coherent units.  相似文献   
28.
Observations were made on the effects of reduced rates of herbicide and nitrogen on naturally occurring populations of Viola aruensis. Progeny arising from these plants were grown in a uniform environment and monitored through to maturity. The size and number of reproductive structures produced by the maternal plants were positively correlated with the maternal plant weight. Herbicide dose affected the plant height of offspring and the effects were more pronounced in those from plants which had received 160 kg N ha-1than 40 kg N ha-1. Although the maternal effects on offspring size diminished with time, the number of reproductive structures in the offspring was significantly correlated with plant height during early development. Increased nitrogen availability to the maternal plant in the absence of herbicide may therefore increase the overall productivity of the subsequent generation.  相似文献   
29.
Degradation of instream habitats in the northern Murray–Darling Basin has occurred through numerous stressors, including siltation, clearing of bankside vegetation, intrusion of livestock and impacts of pest species. A better understanding of habitat preferences of native fish species could help guide future instream habitat restoration actions. The habitat choices of seven native fish species, juvenile Murray Cod (Maccullochella peelii), juvenile Golden Perch (Macquaria ambigua ambigua), juvenile Silver Perch (Bidyanus bidyanus), adult Murray–Darling Rainbowfish (Melanotaenia fluviatilis), adult Olive Perchlet (Ambassis agassizii), adult Un‐specked Hardyhead (Craterocephalus stercusmuscarum fulvus) and adult carp gudgeons (Hypseleotris spp.) were tested in preference troughs to help inform potential habitat restoration actions in the Condamine catchment. Each species was given a choice between pair combinations of open sandy habitat, submerged macrophytes, emergent plants and rocky rubble. Habitat preferences varied between species. Murray Cod, Golden Perch, carp gudgeons and Olive Perchlets preferred structure over open sandy habitat, whilst juvenile Silver Perch, Un‐specked Hardyhead and Murray–Darling Rainbowfish did not avoid open sandy habitats. Juvenile Murray Cod preferred rocky rubble habitat over all other habitat choices. Use of complex rock piles to provide nursery habitat for Murray Cod populations is a potential restoration option. Introduction of rock could also benefit Golden Perch and carp gudgeons. Use of emergent plants, submerged macrophytes and rocky rubble for habitat restoration all appear to have merit for one or more species of small‐bodied fishes or juvenile stages of larger sized fishes. Rocky rubble or floating attached macrophytes could be viable restoration options in areas too turbid to establish submerged macrophytes. These habitat interventions would complement existing actions such as re‐snagging and provision of fish passage to assist with sustainable management of native fish populations.  相似文献   
30.
River regulation can advantage non-native aquatic biota at the expense of native species. Nevertheless, flow regulating structures are sometimes used with the aim of achieving positive environmental outcomes in aquatic ecosystems. In the lower River Murray, Australia, drought-induced water level recession and acid sulfate soil exposure prompted the construction of an earthen levee, isolating a section of river channel (the Goolwa weir pool (GWP)) within which water levels were managed to mitigate a risk of water body acidification. The present study aimed to determine the impact of water level management on the fish community by investigating variation in species abundance and recruitment between sites subject to water level management in the GWP and unmanaged sites in Lake Alexandrina. Prior to levee construction, in August 2009, the abundance of the non-native common carp was similar in the GWP and Lake Alexandrina. Following water level management, in December 2009 and April 2010, the abundance of common carp in the GWP was approximately 1000 and 250 times greater than abundance in Lake Alexandrina, as a result of recruitment of young-of-year fish. No native freshwater species were significantly more abundant in the GWP in August 2009, December 2009 or April 2010. The results of this study suggest that the isolation of a river reach and a managed rise in water level facilitated spawning and recruitment of a non-native fish species. As such, the ecological benefits and risks of restoration and mitigation projects that involve the construction of flow regulating structures and water level management should be carefully considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号