首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   8篇
  国内免费   11篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   10篇
  2005年   9篇
  2004年   7篇
  2003年   3篇
  2002年   9篇
  2001年   15篇
  2000年   14篇
  1999年   11篇
  1998年   7篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
191.
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross‐species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next‐generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross‐genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter‐ and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.  相似文献   
192.
The first comprehensive analysis was made of restriction fragment length polymorphism (RFLP) of the mitochondrial (mt) DNA of two related genera, Triticum (wheat) and Aegilops. This led to clarification of the nature of mtDNA variability and the inference of the phylogeny of the mitochondrial genomes (=chondriome). Forty-six alloplasmic lines and one euplasmic line of common wheat (2n = 42, genomes AABBDD) carrying plasmons (cytoplasmic genomes) of 47 accessions belonging to 33 species were used. This consisted of nearly all the Triticum and Aegilops species. RFLP analysis, carried out with seven mitochondrial gene probes (7.0 kb in total) in combination with three restriction endonucleases, found marked variation: Of the 168 bands detected, 165 were variable (98.2%), indicative that there is extremely high mtDNA variability in these genera. This high variability is attributed to the variation present in the intergenic regions. Most of the variation was between chondriomes of different plasmon types; only 8 bands (4.8%) between those of the same plasmon types were variable, evidence of clear chondriome divergence between different plasmon types. The first comprehensive phylogenetic trees of the chondriome were constructed on the basis of genetic distances. All but 1 of the polyploids had chondriomes closely related to those of 1 putative parent, indicative of uniparental chondriome transmission at the time of polyploid formation. The chondriome showed parallel evolutionary divergence to the plastome (chloroplast genome). Use of a minimum set of 3 mtDNA probe-enzyme combinations is proposed for tentative plasmon type identification and the screening of new plasmon types in those genera. Received: 20 March 1999 / Accepted: 22 June 1999  相似文献   
193.
Based on the conserved regions of known resistance genes, an NBS-LRR-type CCN resistance gene analog was isolated from the CCN resistant E-10 near isogenic lines (NILs) of wheat, designated as CreZ (GenBank accession number: EU327996). It contained a complete ORF that was 2775 bp in length and encoded 924 amino acids. Sequence comparison indicated that it shared 92% nucleotide and 87% amino acid identity with those of the known CCN-resistance gene Cre3 and had similar characteristic conserved motifs to those in other established NBS-LRR disease resistance genes. The expression profiling of CreZ indicated that it was specifically expressed in the roots of resistant plants and real-time PCR analysis demonstrated that expression levels drastically increased when the plants were inoculated with cereal cyst nematodes. It could be inferred, then, that CreZ belongs to the NBS-LRR resistance gene family and is a candidate gene for potential resistance to the cereal cyst nematode. Published in Russian in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 6, pp. 1070–1077. The text was submitted by the authors in English.  相似文献   
194.
山羊草属异源多倍体植物基因组进化的ISSR分析   总被引:1,自引:0,他引:1  
使用31个ISSR引物对山羊草属Aegilops多倍体植物及其祖先二倍体(共23种)的基因组进行了分析,结果表明:与其二倍体祖先种相比,异源多倍体物种的基因组发生了很大变化。在含U基因组的异源多倍体物种中,U基因组相对而言变化很小,而其他基因组则发生了不同程度的变化。这表明当U基因组与其他基因组共存于多倍体物种中时,U基因组表现出较强的“同化效应”。对这些基因组的进化进行了讨论。  相似文献   
195.
196.
Microsatellite analysis of Aegilops tauschii germplasm   总被引:8,自引:0,他引:8  
The highly polymorphic diploid grass Aegilops tauschii isthe D-genome donor to hexaploid wheat and represents a potential source for bread wheat improvement. In the present study microsatellite markers were used for germplasm analysis and estimation of the genetic relationship between 113 accessions of Ae. tauschii from the gene bank collection at IPK, Gatersleben. Eighteen microsatellite markers, developed from Triticum aestivum and Ae. tauschii sequences, were selected for the analysis. All microsatellite markers showed a high level of polymorphism. The number of alleles per microsatellite marker varied from 11 to 25 and a total of 338 alleles were detected. The number of alleles per locus in cultivated bread wheat germplasm had previously been found to be significantly lower. The highest levels of genetic diversity for microsatellite markers were found in accessions from the Caucasian countries (Georgia, Armenia and the Daghestan region of Russia) and the lowest in accessions from the Central Asian countries (Uzbekistan and Turkmenistan). Genetic dissimilarity values between accessions were used to produce a dendrogram of the relationships among the accessions. The result showed that all of the accessions could be distinguished and clustered into two large groups in accordance with their subspecies taxonomic classification. The pattern of clustering of the Ae. tauschii accessions is according to their geographic distribution. The data suggest that a relatively small number of microsatellites can be used to estimate genetic diversity in the germplasm of Ae. tauschii and confirm the good suitability of microsatellite markers for the analysis of germplasm collections. Received: 8 September 1999 / Accepted: 7 October 1999  相似文献   
197.
方穗山羊草Rubisco活性及小亚基基因克隆和功能分析   总被引:1,自引:0,他引:1  
以方穗山羊草(Aegilops squarrosa L.)为母本,普通小麦(Triticum aestivum L.)为父本杂交,并以普通小麦为父本回交10代获得的核质杂种小麦为实验材料,测定了父母本及其核质杂种小麦rubisco的羧化活性和加氧活性。同时以方穗山羊草幼苗叶片为材料构建了库容量为5.5×10~5pfu的λgt10cDNA文库,并以水稻rbcS部分片段为探针筛选该cDNA文库,获得了方穗山羊草rbcS的cDNA克隆pRAS-1。核苷酸序列分析表明该cDNA全长815bp。比较以上三种材料中Rubisco活性和小亚基氨基酸的差异,推测小亚基上第56、84、98和117位氨基酸残基可能对酶的功能起着重要的作用。  相似文献   
198.
199.
Restriction fragment length polymorphism (RFLP) markers were used to map male fertility restoring gene that was transferred from chromosome 6U of Aegilops umbellulata Zhuk. to wheat. Segments of chromosome 6U bearing the gene that restore fertility to T. timopheevi Zhuk. male sterile cytoplasm were identified in all four translocation lines by two probes, BCD21 and BCD342. Lines 040-5,061-1 and 061-4 are T6BL.6BS6U translocations, while line 2114 is a T6AL.6AS-6U translocation. Line 2114 has a much larger 6U chromosomal segment and lower frequency of transmission of male gametes with the alien segment than the other three lines. The restoring gene carried by the 6U segment in 2114 showed high expressivity and complete penetrance. This restoring gene is designated Rf6. A homoeologous chromosome recombination mechanism is discussed for the alien gene transfer.Paper No. 823 of the Cornell plant breeding series  相似文献   
200.
Heat shock protein (HSP101) function as molecular chaperones and confer thermotolerance to plants. In the present investigation, identification, comprehensive expression analysis, phylogeny and protein modelling of HSP101 gene has been done in Aegilops speltoides accession Pau3583. In the present study, we cloned and in silico characterized a HSP101C gene designated as AsHSP101C-Pau3583. AsHSP101C-Pau3583 is 4180 bp long with seven exons and six introns and encoded a polypeptide of 910 amino acids predicted by FGENESH. We have identified 58 SNPs between the AsHSP101C-Pau3583 and reference gene sequence extracted from Ae. speltoides TGAC assembly. Real-time RT-PCR analysis of expression levels of HSP101 gene in two wheat genotypes under heat stress revealed that gene namely HSP101C was up-regulated in Aegilops speltoides acc. Pau3583 by > fourfold in comparison to Triticum aestivum cv. PBW343 under heat stress signifies that it plays a role in conferring heat tolerance. Sequence comparison and phylogenetic analysis of AsHSP101C-Pau3583 with seven wheat homologs Triticum aestivum, Aegilops speltoides (TGAC), Triticum durum cv Cappelli, Triticum durum cv Strongfield, Triticum monococcum, Aegilops tauschii and Triticum urartu showed significant similarities with highly conserved coding regions and functional domains (AAA, AAA + 2, ClpB domains), suggesting the conserved function of HSP101C in different species. The illustration of the protein models of HSP101C in homologs provided information for the ATP-binding motifs within the nucleotide binding domains (NBD), specific for the chaperone activity. These findings are important and identified SNPs could be used for designing markers for ensuring the transfer of AsHSP101C-Pau3583 gene into hexaploid wheat and its role in heat tolerance.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01005-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号