首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1815篇
  免费   38篇
  国内免费   14篇
  1867篇
  2023年   14篇
  2022年   15篇
  2021年   31篇
  2020年   18篇
  2019年   30篇
  2018年   48篇
  2017年   16篇
  2016年   16篇
  2015年   25篇
  2014年   125篇
  2013年   176篇
  2012年   92篇
  2011年   118篇
  2010年   62篇
  2009年   76篇
  2008年   103篇
  2007年   78篇
  2006年   49篇
  2005年   51篇
  2004年   27篇
  2003年   28篇
  2002年   30篇
  2001年   17篇
  2000年   18篇
  1999年   23篇
  1998年   24篇
  1997年   20篇
  1996年   33篇
  1995年   18篇
  1994年   21篇
  1993年   24篇
  1992年   24篇
  1991年   21篇
  1990年   34篇
  1989年   19篇
  1988年   16篇
  1987年   13篇
  1986年   12篇
  1985年   22篇
  1984年   35篇
  1983年   29篇
  1982年   42篇
  1981年   28篇
  1980年   39篇
  1979年   25篇
  1978年   14篇
  1977年   18篇
  1976年   16篇
  1975年   11篇
  1974年   13篇
排序方式: 共有1867条查询结果,搜索用时 0 毫秒
61.
The enzyme activity of dephosphorylation of thymidine triphosphate was found in microsomal fraction of rat liver. The enzyme activity decreased at the time when [3H]thymidine incorporation into DNA of regenerating liver increased. When the [3H]thymidine incorporation was suppressed by 1,3-diaminopropane, the enzyme activity remained elevated. These results suggest that the enzyme activity appears to be closely linked to DNA synthesis.  相似文献   
62.
Abstract: With [3H]guanosine triphosphate ([3H]GTP) and [3H]β, γ -imidoguanosine 5′-triphosphate ([3H]GppNHp) as the labelled substrates, both the binding and the catabolism of guanine nucleotides have been studied in various brain membrane preparations. Both labelled nucleotides bound to a single class of noninteracting sites (KD= 0.1-0.5 μm ) in membranes from various brain regions (hippocampus, striatum, cerebral cortex). Unlabelled GTP, GppNHp, and guanosine diphosphate (GDP) but not guanosine monophosphate (GMP) and guanosine competitively inhibited the specific binding of [3H]guanine nucleotides. Calcium (0.1–5 mm ) partially prevented the binding of [3H]GTP and [3H]GppNHp to hippocampal and striatal membranes. This resulted from both an increased catabolism of [3H]GTP (into [3H]guanosine) and the likely formation of Ca-guanine nucleotide2- complexes. The blockade of guanine nucleotide catabolism was responsible for the enhanced binding of [3H]GTP to hippocampal membranes in the presence of 0.1 mm -ATP or 0.1 mm -GMP. Striatal lesions with kainic acid produced both a 50% reduction of the number of specific guanine nucleotide binding sites and an acceleration of [3H]GTP and [3H]GppNHp catabolism (into [3H]guanosine) in membranes from the lesioned striatum. This suggests that guanine nucleotide binding sites were associated (at least in part) with intrinsic neurones whereas the catabolising enzyme(s) would be (mainly) located to glial cells (which proliferate after kainic acid lesion). The characteristics of the [3H]guanine nucleotide binding sites strongly suggest that they may correspond to the GTP subunits regulating neurotransmitter receptors including those labelled with [3H]5-hydroxytryptamine ([3H]5-HT) in the rat brain.  相似文献   
63.
Adenosine Transport into Guinea-pig Synaptosomes   总被引:17,自引:15,他引:2  
Abstract: Kinetics for transport of adenosine into guinea-pig neocortex synaptosomes were studied by incubating them with [14C]adenosine for up to 30 s. The apparent K m value of the high-affinity transport system for adenosine was 21.1 μM and the V max value was 257.3 pmol/min/mg protein. The transport system was inhibited by both compounds structurally related (compounds 554 and 555) and unrelated (dipyridamole) to adenosine. Because electrically stimulated synaptosomes release up to 1.5% of the adenosine derivative content per min, the physiological significance of adenosine uptake is discussed as a possible mechanism to compensate for the loss of adenine nucleotides from synaptosomes preparations.  相似文献   
64.
65.
Adenosine deaminase (EC 3.5.4.4) was found to occur in the extract of Azotobacter vinelandii, strain 0, and purified by heating at 65°C, fractionation with ammonium sulfate, DEAE-cellulose chromatography and gel filtration on Sephadex G-150. Purified adenosine deaminase was effectively stabilized by the addition of ethylene glycol. The molecular weight of the enzyme was estimated to be 66,000 by gel filtration on Sephadex G-150. The enzyme specifically attacked adenosine and 2-deoxyadenosine to the same extent, and formycin A to a lesser extent. The pH optimum of the enzyme was observed at pH 7.2. Double reciprocal plot of initial velocity versus adenosine concentration was concave upward, and Hill interaction coefficient was calculated to be 1.5, suggesting the allosteric binding of the substrate. ATP inhibited adenosine deaminase in an allosteric manner, whereas other nucleotides were without effect. The physiological significance of the enzyme was discussed in relation to salvage pathway of purine nucleotides.  相似文献   
66.
67.
Nuclei isolated from Yoshida sarcoma cells had activity for conversion of dGTP to dGMP dependent on DNA synthesis. The ratio of nucleotide generation/generation + incorporation was 0.4 ± 0.1, indicating that approx. 40% of the incorporated dGMP was excised. Two lines of evidence indicated the dependence of this activity on DNA synthesis. (1) The activity was observed only in the presence of ATP, which is essential for nuclear DNA synthesis. (2) Inhibitors of DNA synthesis, such as N-ethylmaleimide, aphidicolin, spermine and KCl, also inhibited ATP- or DNA synthesis-dependent dGMP generation. Although nuclei contain nucleoside triphosphatase (N-nucleotidase), this enzyme was not involved appreciably in DNA synthesis-dependent dGMP generation. The reason for this was explained by the following findings. (a) Inhibitors did not decrease dGMP production in the complete absence of DNA synthesis. (b) Inhibitors did not inactivate N-nucleotidase to the same degree as they inhibited DNA synthesis-dependent dGMP generation. (c) Addition of ATP reduced dGTP hydrolysis catalyzed by N-nucleotidase. (d) GDP had no appreciable effect on DNA synthesis-dependent dGMP generation, but had a diluting effect on dGMP production catalyzed by N-nucleotidase. These results show that the pathway of dGMP generation in isolated nuclei was switched on addition of ATP from a N-nucleotidase-catalyzed one to a DNA polymerase-exonuclease-catalyzed one.  相似文献   
68.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1)Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5)K+ + Na+ + ATP, Na+ + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (K0.5s) were 3 mM, 0.13 mM and 4μM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i.e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)-ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 · nucleotide and EP), which all have different conformations.  相似文献   
69.
Pretreatment of pigeon erythrocyte membrane vesicles with amino acids, ATP, GTP, Pi and some other simple cell constituents (singly and in combination) causes an increase in ATP-dependent Ca2+-uptake activity of vesicles upon subsequent incubation with 45Ca2+ after removal of the above agents from the ‘i’ face. Amino acids augment the stimulation by all stimulatory agents and are required for stimulation by Pi. The effects of amino acids, ATP, GTP and Pi all occur at physiological concentrations. Many if not all of the effects of the mixture of amino acids that occur naturally in the cells can be accounted for by the group transported by the ‘ASC’ transport system of Christensen (Christensen H.N. (1975) Biological Transport, 2nd edn., W.A. Benjamin, Inc., Reading, MA), but not by any single amino acid at its physiological concentration. The effects of ATP and GTP are not mimicked by their non-hydrolysable β, γ-imido analogues nor by the corresponding 3′, 5′-cyclic monophosphates. None of the effects described appears to involve calmodulin. We suggest that amino acid transport plays a role in metabolic regulation through effects on cell [Ca2+]. Analogous effects on cell [Ca2+] may be involved in the action of the many hormones which augment amino acid accumulation by the ‘A’ amino acid transport system.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号