首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3414篇
  免费   161篇
  国内免费   108篇
  3683篇
  2024年   10篇
  2023年   66篇
  2022年   55篇
  2021年   109篇
  2020年   67篇
  2019年   93篇
  2018年   76篇
  2017年   70篇
  2016年   62篇
  2015年   72篇
  2014年   157篇
  2013年   238篇
  2012年   97篇
  2011年   119篇
  2010年   74篇
  2009年   94篇
  2008年   157篇
  2007年   145篇
  2006年   111篇
  2005年   127篇
  2004年   95篇
  2003年   107篇
  2002年   100篇
  2001年   70篇
  2000年   66篇
  1999年   85篇
  1998年   81篇
  1997年   82篇
  1996年   83篇
  1995年   73篇
  1994年   58篇
  1993年   86篇
  1992年   65篇
  1991年   53篇
  1990年   71篇
  1989年   43篇
  1988年   56篇
  1987年   50篇
  1986年   35篇
  1985年   46篇
  1984年   37篇
  1983年   32篇
  1982年   52篇
  1981年   41篇
  1980年   40篇
  1979年   32篇
  1978年   9篇
  1977年   9篇
  1976年   8篇
  1973年   7篇
排序方式: 共有3683条查询结果,搜索用时 0 毫秒
971.
In several parts of the nervous system, adenosine has been shown to function as an extracellular neuromodulator binding to surface receptors on target cells. This study examines the possible role of adenosine in mediating light and circadian regulation of retinomotor movements in teleost cone photoreceptors. Teleost cones elongate in the dark and contract in the light. In continuous darkness, the cones continue to elongate and contract at subjective dusk and dawn in response to circadian signals. We report here that exogenous adenosine triggers elongation (the dark/night movement) in isolated cone inner segment-cone outer segment preparations (CIS-COS) in vitro. Agonist/antagonist potency profiles indicate that adenosine's effect on cone movement is mediated by an A2-like adenosine receptor, which like other A2 receptors enhances adenylate cyclase activity. Although closest to that expected for A2 receptors, the antagonist potency profile for CIS-COS does not correspond exactly to any known A2 receptor subtype, suggesting that the cone receptor may be a novel A2 subtype. Our findings are consistent with previous reports that retinal adenosine levels are higher in the dark, and further suggest that adenosine could act as a neuromodulatory "dark signal" influencing photoreceptor metabolism and function in the fish retina.  相似文献   
972.
We have previously shown that a low-copper (Cu) diet produced alterations in placental Cu transport and fetal Cu stores. Because Cu deficiency has been associated with lipid deposition in rat dam liver, we hypothesized that a high fat intake, a prevalent dietary habit in many populations, may worsen fetal Cu status and its closely linked iron (Fe) deposits. Pregnant rats were fed one of four diets during the second half of gestation: NFNCu: normal fat (7%), normal Cu (6 mg/kg); HFNCu: high fat (21%), normal Cu; NFLCu: normal fat, low Cu (0.6 mg/kg), and HFLCu: high fat, low Cu. One day before delivery, dams were anesthetized, and maternal as well as fetal plasma and tissues were obtained. Maternal, fetal, and placental weights were indistinguishable regardless of the group. Dam plasma Cu and placental Cu were lower in both LCu groups than in the NFNCu or the HFNCu groups. However, fetal plasma Cu was similar in all treatment groups. Dam and fetal liver Cu stores were reduced in the LCu groups compared to the NCu groups. This resulted in lower fetal/maternal liver Cu ratios in the NFLCu (1.79 ± 0.14,p < 0.05) and HFLCu (1.59 ± 0.21,p < 0.05) as compared to the NFNCu (4.12 ± 0.44) and the HFNCu (4.15 ± 0.27). Dam liver Fe was higher in the NFNCu than in HFNCu group (1.10 ± 0.8 vs. 0.89 ± 0.06 μmol/g,p < 0.05); fetal liver Fe from HFNCu and NFLCu dams was lower than that from NFNCu fetuses (NFNCu: 2.42 ± 0.14; HFNCu: 1.92 ± 0.15,p < 0.05; NFLCu: 1.81 ± 0.10,p < 0.01). Fetuses of the HFLCu group had a lower heart Fe than the NFNCu group (0.56 ± 0.03 vs. 44.0 ± 3.0 μg/g,p < 0.01). These data indicate that a maternal high-fat diet can potentially aggravate the effects of Cu deficiency by further altering fetal Cu and Fe tissue stores.  相似文献   
973.
The properties of piglet cardiac AMP deaminase were determined and its regulation by pH, phosphate, nucleotides and phosphorylation is described. AMP deaminase purified from the ventricles of newborn piglet hearts displayed hyperbolic kinetics with a Km of 2 mM for 5-AMP. The enzyme had a pH optimum of 7.0 and was strongly inhibited by inorganic phosphate. ATP decreased the Km of the native enzyme 3-fold, but did not significantly block the inhibitory effects of phosphate. Kinetic parameters were not significantly altered in the presence of adenosine, cyclic AMP and NAD+, whereas, the Km was decreased by 50% in the presence of NADH. Piglet cardiac AMP deaminase was phosphorylated by protein kinase C, resulting in a 2-fold increase in Vmax with no change in Km. However, incubation with cAMP-dependent protein kinase did not affect enzyme kinetics. The 80-85 kD protein subunit of piglet cardiac AMP deaminase immunoreacted with antisera raised against human erythrocyte AMP deaminase, rabbit heart AMP deaminase and human recombinant AMP deaminase 3 (isoform E). These results are discussed in relation to in situ AMP deaminase activity in neonatal piglet heart myocytes.  相似文献   
974.
Nucleotide sugar transporters play a central role in the process of glycosylation. They are responsible for the translocation of nucleotide sugars from the cytosol, their site of synthesis, into the Golgi apparatus where the activated sugars serve as substrates for a variety of glycosyltransferases. We and others have recently identified and cloned the first GDP-fucose transporters of H. sapiens and C. elegans. Based on sequence similarity, we could identify a putative homolog in Drosophila melanogaster showing about 45% identity on protein level. The gene (CG9620) encodes a highly hydrophobic, multi-transmembrane spanning protein of 38.1 kDa that is localized in the Golgi apparatus. In order to test whether this protein serves as a GDP-fucose transporter, we performed complementation studies with fibroblasts from a patient with LADII (leukocyte adhesion deficiency II) which exhibit a strong reduction of fucosylation due to a point mutation in the human GDP-fucose transporter gene. We show that transient transfection of these cells with the Drosophila CG9620 cDNA corrects the GDP-fucose transport defect and reestablishes fucosylation. This study gives experimental proof that the product of the in silico identified Drosophila gene CG9620 serves as a functional GDP-fucose transporter.  相似文献   
975.
Protein C (PC) is an important anticoagulant in human blood plasma, and early diagnosis of PC deficiency is critical for preventing dangerous thromboembolic complications. A fiber-optic PC immuno-biosensor has been under development in our research group for real-time PC-deficiency diagnosis. The sensor has demonstrated a good sensitivity and specificity for quantifying PC in buffered solutions. However, for plasma samples, with a limited sample reaction time, the sensor produced only 30% of the signal intensity of PC in buffer. The high plasma viscosity (1.9 cP) was speculated as the major reason for signal intensity reduction. In this investigation, the sensing performance of the fiber-optic PC biosensor is systematically characterized in terms of physical and chemical properties of the sample media. Theoretical and experimental analyses indicate that the reduced diffusion rate of PC molecules in viscous samples caused the sensing system to be more mass-transfer-limited. Convective flow of sample/reagent solutions during immunoreactions can increase the rate of the analyte mass transport from the bulk solution to the sensor surface, with reaction kinetics changing from mass-transfer-limited to reaction-limited as flow velocity increases. It was shown that PC sensor performance was significantly improved for plasma samples with convection. The effect of the flow velocity and incubation times for samples and reagents on the sensor performance was also systematically analyzed to optimize the assay protocol for PC sensing. Currently, a 6-cm-long immuno-biosensor is capable of quantifying PC in plasma (1 mL) in the heterozygous PC deficiency range (0.5 to 2.5 microg/mL) within 5 minutes, at an average signal-to-noise ratio of 50.  相似文献   
976.
The functional consequences of an in vivo heterozygous insertion mutation in the human facilitated glucose transporter isoform 1 (GLUT1) gene were investigated. The resulting frameshift in exon 10 changed the primary structure of the C-terminus from 42 in native GLUT1 to 61 amino acid residues in the mutant. Kinetic studies on a patient's erythrocytes were substantiated by expressing the mutant cDNA in Xenopus laevis oocytes. K(m) and V(max) values were clearly decreased explaining pathogenicity. Targeting to the plasma membrane was comparable between mutant and wild-type GLUT1. Transport inhibition by cytochalasin B was more effective in the mutant than in the wild-type transporter. The substrate specificity of GLUT1 remained unchanged.  相似文献   
977.
978.
Current knowledge of iron metabolism   总被引:1,自引:0,他引:1  
Iron plays many roles in human physiology. In this article, we summarize the basic and current knowledge of this essential micronutrient on human metabolism.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号