首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   686篇
  免费   68篇
  国内免费   10篇
  2023年   11篇
  2022年   13篇
  2021年   30篇
  2020年   24篇
  2019年   57篇
  2018年   31篇
  2017年   18篇
  2016年   24篇
  2015年   32篇
  2014年   43篇
  2013年   39篇
  2012年   24篇
  2011年   28篇
  2010年   19篇
  2009年   19篇
  2008年   34篇
  2007年   26篇
  2006年   26篇
  2005年   34篇
  2004年   25篇
  2003年   33篇
  2002年   19篇
  2001年   15篇
  2000年   17篇
  1999年   12篇
  1998年   14篇
  1997年   11篇
  1996年   16篇
  1995年   6篇
  1994年   7篇
  1993年   13篇
  1992年   8篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   5篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1970年   2篇
排序方式: 共有764条查询结果,搜索用时 15 毫秒
101.
许轶洲  高炎 《生命科学》2010,(4):313-316
脂联素是由脂肪组织分泌的一种细胞因子,与心血管疾病密切相关。脂联素通过抗炎和抗氧化抑制动脉粥样硬化发生。脂联素可促进血管生成,并具有保护心肌免受缺血再灌注损伤和减轻高压力负荷导致的心肌肥厚的功能。脂联素主要通过激活腺苷酸活化的蛋白激酶、环磷酸腺苷-蛋白激酶A等信号通路而发挥对心血管的保护作用。该文主要针对脂联素在心血管系统中的作用及其分子机制的研究进展作一综述。  相似文献   
102.
Cardiac fibroblasts (CFs) participate in cardiac remodeling after hypoxic cardiac damage, and remodeling is thought to be mediated by CF synthesis of brain natriuretic peptide (BNP). It is unknown whether the peroxisome proliferator-activated receptors (PPARs), which mediate cellular signaling for growth and migration, affect BNP synthesis and whether PPARs participate in regulation of extracellular matrix protein (ECM) expression for remodeling. We examined the production of BNP in cultured neonatal ventricular CFs and its signaling system on collagen synthesis and on activation of matrix metalloproteinases (MMPs) in reoxygenation after hypoxia. BNP mRNA was detected in CFs, and a specific BNP protein, BNP1-32, was secreted into the media. Abundance of collagen I and III was increased in the media at reoxygenation. mRNA and protein levels for MMP-2 and the tissue inhibitor of metalloproteinase (TIMP)-1 were enhanced in CFs at reoxygenation. These observations also were noted in CFs after incubation with angiotensin II (10 μM) for 24 h. Pretreatment with pioglitaozone (0.1–10 μM) attenuated BNP mRNA and protein abundance of collagen III, MMP-2, and TIMP-1 in CFs at reoxygenation. The secreted BNP was also decreased by pioglitaozone in the media. Furthermore, PPAR activators inhibited reoxygenation-induced activation of nuclear factor (NF)-kB. These results demonstrate that PPAR activators inhibit BNP synthesis in CFs and imply that PPAR activators may regulate ECM remodeling partially through the NF-kB-mediated pathway.  相似文献   
103.
Liu Z  Song Y  Gu S  He X  Zhu X  Shen Y  Wu B  Wang W  Li S  Jiang P  Lu J  Huang W  Yan Q 《Gene》2012,506(2):339-343
Hypertrophic cardiomyopathy is a primary disorder characterized by asymmetric thickening of the septum and left ventricular wall, which affects 1 in 500 individuals in the general population. Mutations in mitochondrial DNA have been found to be one of the most important causes of hypertrophic cardiomyopathy. Here we report the clinical, genetic and molecular characterization of a Han Chinese family with a likely maternally transmitted hypertrophic cardiomyopathy. Four (2 men/2 women) of 5 matrilineal relatives in this 3-generation family exhibited the variable severity and age at onset of 44 to 79years old. Sequence analysis of the entire mitochondrial DNA in this pedigree identified the known homoplasmic ND5 12338T>C variant. This mitochondrial DNA haplogroup belongs to the Eastern Asian F2a. The 12338T>C variant, highly evolutionarily conserved, resulted in the replacement of the translation initiating methionine with a threonine, shortening the ND5 polypeptide by 2 amino acids. The occurrence of ND5 12338T>C variant exclusively in maternal members of this Chinese family suggested that the 12338T>C variant is associated with maternally inherited hypertrophic cardiomyopathy. Our findings will provide theoretical basis for genetic counseling of maternally inherited hypertrophic cardiomyopathy.  相似文献   
104.
Zhong X  Liu J  Lu F  Wang Y  Zhao Y  Dong S  Leng X  Jia J  Ren H  Xu C  Zhang W 《Cell biology international》2012,36(10):937-943
Nuclear Ca2+ plays a pivotal role in the regulation of gene expression. IP3 (inositol-1,4,5-trisphosphate) is an important regulator of nuclear Ca2+. We hypothesized that the CaR (calcium sensing receptor) stimulates nuclear Ca2+ release through IICR (IP3-induced calcium release) from perinuclear stores. Spontaneous Ca2+ oscillations and the spark frequency of nuclear Ca2+ were measured simultaneously in NRVMs (neonatal rat ventricular myocytes) using confocal imaging. CaR-induced nuclear Ca2+ release through IICR was abolished by inhibition of CaR and IP3Rs (IP3 receptors). However, no effect on the inhibition of RyRs (ryanodine receptors) was detected. The results suggest that CaR specifically modulates nuclear Ca2+ signalling through the IP3R pathway. Interestingly, nuclear Ca2+ was released from perinuclear stores by CaR activator-induced cardiomyocyte hypertrophy through the Ca2+-dependent phosphatase CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) pathway. We have also demonstrated that the activation of the CaR increased the NRVM protein content, enlarged cell size and stimulated CaN expression and NFAT nuclear translocation in NRVMs. Thus, CaR enhances the nuclear Ca2+ transient in NRVMs by increasing fractional Ca2+ release from perinuclear stores, which is involved in cardiac hypertrophy through the CaN/NFAT pathway.  相似文献   
105.
106.
目的:探讨非诺贝特(fenofibrate)对血管紧张素Ⅱ(AngⅡ)诱导的肥大心肌细胞的抑制作用及对FoxO1表达的影响。方法:首先采用AngⅡ诱导心肌细胞肥大,将细胞分为三组:对照组:未给予任何干预;心肌细胞肥大组:AngⅡ(10-7mol/L)刺激细胞;治疗组:先给予fenofibrate(10-5mol/L),30min后AngⅡ(10-7mol/L)刺激细胞。应用蛋白免疫印迹法(western-blotting)和实时定量PCR法(real time PCR)检测各组细胞中转录因子FoxO1的蛋白质及mRNA含量,心肌细胞肥大的判断使用脑钠肽(brain natriuret icpepide BNP)。结果:心肌细胞肥大组的FoxO1表达较对照组明显降低,而治疗组的FoxO1表达较心肌肥大组明显升高。结论:非诺贝特可能通过上调FoxO1表达,从而抑制心肌细胞肥大。  相似文献   
107.
In response to cancer, AIDS, sepsis and other systemic diseases inducing muscle atrophy, the E3 ubiquitin ligase Atrogin1/MAFbx (MAFbx) is dramatically upregulated and this response is necessary for rapid atrophy. However, the precise function of MAFbx in muscle wasting has been questioned. Here, we present evidence that during muscle atrophy MAFbx targets the eukaryotic initiation factor 3 subunit 5 (eIF3-f) for ubiquitination and degradation by the proteasome. Ectopic expression of MAFbx in myotubes induces atrophy and degradation of eIF3-f. Conversely, blockade of MAFbx expression by small hairpin RNA interference prevents eIF3-f degradation in myotubes undergoing atrophy. Furthermore, genetic activation of eIF3-f is sufficient to cause hypertrophy and to block atrophy in myotubes, whereas genetic blockade of eIF3-f expression induces atrophy in myotubes. Finally, eIF3-f induces increasing expression of muscle structural proteins and hypertrophy in both myotubes and mouse skeletal muscle. We conclude that eIF3-f is a key target that accounts for MAFbx function during muscle atrophy and has a major role in skeletal muscle hypertrophy. Thus, eIF3-f seems to be an attractive therapeutic target.  相似文献   
108.
Cardiac hypertrophy induced by exercise is associated with less cardiac fibrosis and better systolic and diastolic function, suggesting that the adaptive mechanisms may exist in exercise-induced hypertrophy. To identify molecular mechanisms by which exercise training stimulates this favorable phenotype, a proteomic approach was employed to detect rat cardiac proteins that were differentially expressed or modified after exercise training. Sixteen male Sprague–Dawley rats were divided into trained (T) and control(C). T rats underwent eight weeks of swimming training seven days/week, using a high intensity protocol. Hearts were used to generate 2-D electrophoretic proteome maps. Training significantly altered 23 protein spot intensities (P < 0.05), including proteins associated with the mitochondria oxidative metabolism, such as prohibitin, malate dehydrogenase, short-chain acyl-CoA dehydrogenase, triosephosphate isomerase, electron transfer flavoprotein subunit beta, ndufa10 protein, ATP synthase subunit alpha and isocitrate dehydrogenase [NAD] subunit. Additionally, Prohibitin was increased in the exercise-induced hearts. Cytoskeletal, signal pathway, stress and oxidative proteins also increased within T groups. These results strongly support the notion that the observed changes in the expression of energy metabolism proteins resulted in a potential increase in the capacity to synthesise ATP, probably via mitochondrial oxidative metabolism. The observed changes in the expression of these metabolic and structural proteins induced by training may beneficially influence heart metabolism, stress response and signalling paths, and therefore improve the overall cardiac function.  相似文献   
109.
There is accumulating evidence indicating the role of aldosterone in the pathogenesis of hypertension and renal injury. In this study, we investigated the role of the Rho-kinase dependent signaling pathway in aldosterone-induced myofibroblastic transdifferentiation and collagen gene expression in rat mesangial cells (RMCs). Stimulation with aldosterone (1 nmol/L) significantly increased phosphorylation of myosin phosphatase target subunit-1 (MYPT-1), a marker of Rho-kinase activity, with a peak at 20 min in RMCs. Pre-incubation with a selective mineralocorticoid receptor antagonist, eplerenone (10 µmol/L), or a specific Rho-kinase inhibitor, Y27632 (10 µmol/L), attenuated the aldosterone-induced increase in MYPT-1 phosphorylation. Aldosterone also induced hypertrophy in RMCs, accompanied by an increase in actin polymerization and expression of α-smooth muscle actin (α-SMA), a myofibroblastic transdifferentiation marker. Collagen type I, III and IV mRNA levels were also increased with aldosterone stimulation. Pre-treatment with eplerenone or Y27632 prevented the aldosterone-induced cell hypertrophy, actin polymerization, the increase in α-SMA expression and the increases of collagen type I, III, IV mRNA levels in RMCs. These results suggest that aldosterone-induced mesangial cell hypertrophy is associated with cell transformation, leading to an increase in collagen gene expression via the Rho-kinase dependent signaling pathway.  相似文献   
110.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from –80 to –30 mV was decreased by 30% (–9.0 ± 1.16 pA pF–1 in control and –6.31 ± 0.67 pA pF–1 in hypertrophy, p < 0.05, n= 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle. (Mol Cell Biochem 261: 217–226, 2004)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号