首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15630篇
  免费   1091篇
  国内免费   499篇
  2023年   132篇
  2022年   214篇
  2021年   289篇
  2020年   318篇
  2019年   412篇
  2018年   487篇
  2017年   363篇
  2016年   378篇
  2015年   438篇
  2014年   925篇
  2013年   1304篇
  2012年   683篇
  2011年   750篇
  2010年   653篇
  2009年   801篇
  2008年   811篇
  2007年   723篇
  2006年   701篇
  2005年   656篇
  2004年   594篇
  2003年   565篇
  2002年   492篇
  2001年   285篇
  2000年   251篇
  1999年   274篇
  1998年   327篇
  1997年   250篇
  1996年   210篇
  1995年   247篇
  1994年   235篇
  1993年   209篇
  1992年   227篇
  1991年   151篇
  1990年   162篇
  1989年   152篇
  1988年   136篇
  1987年   125篇
  1986年   129篇
  1985年   191篇
  1984年   184篇
  1983年   192篇
  1982年   191篇
  1981年   131篇
  1980年   91篇
  1979年   69篇
  1978年   39篇
  1977年   22篇
  1976年   17篇
  1975年   10篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
21.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
22.
The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N6-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.  相似文献   
23.
A method for the detection of the specific binding of 3-methylcholanthrene to rat liver cytosolic proteins is described. The separation of the protein-bound 3-methylcholanthrene from the free 3-methylcholanthrene was achieved using a batch DEAE-cellulose technique. Extraction of the DEAE-cellulose with 0.3 M KCl allowed the selective release and measurement of the amount of protein-bound 3-methylcholanthrene. The assay was optimized for the following parameters: time of incubation with DEAE-cellulose, time required for salt extraction, protein concentration, the concentration of KCl required to elute the specific binding proteins, the amount of DEAE-cellulose required to bind the specific binding proteins, and ligand specificity. The sedimentation properties of those 3-methylcholanthrene-binding proteins which were extracted with salt from DEAE-cellulose were examined on 5 to 20% sucrose gradients; the major binding species sedimented as a broad peak at 4.5 S.  相似文献   
24.
A CII-responsive promoter within the Q gene of bacteriophage lambda   总被引:2,自引:0,他引:2  
F H Stephenson 《Gene》1985,35(3):313-320
  相似文献   
25.
《Cell reports》2020,30(5):1373-1384.e4
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   
26.
27.
28.
Acetylcholine receptor (AChR) purified from human skeletal muscle affinity-alkylated with bromoacetyl[methyl-3H]choline bromide ([3H]BAC) in mildly reducing conditions to yield a specifically radiolabeled polypeptide, Mr 44,000, the alpha-subunit. The binding of [125I]alpha-bungarotoxin to AChR was completely inhibited by affinity-alkylation, indicating that the human AChR's binding site for alpha-bungarotoxin is closely associated with the alpha-subunit's acetylcholine binding site. Structures in the vicinity of the alpha-bungarotoxin binding sites of AChRs from human muscle and Torpedo electric organ were compared by varying the conditions of alkylation. Under optimal conditions of reduction and alkylation, both human and Torpedo AChR incorporated BAC in equivalence to the number of alpha-bungarotoxin binding sites. However, with limited conditions of reduction but sufficient BAC to alkylate 100% of the alpha-bungarotoxin binding sites of human AChR, only 71% of the Torpedo AChR's binding sites were alkylated. In optimal conditions of reduction but with the minimal concentration of BAC that permitted 100% alkylation of the human AChR's alpha-bungarotoxin sites, only 74% of the Torpedo AChR's binding sites were alkylated. These data suggest that the neurotransmitter binding region of human muscle AChR is structurally dissimilar from that of Torpedo electric organ, having a higher binding affinity for BAC and an adjacent disulfide bond that is more readily accessible to reducing agents.  相似文献   
29.
Calmodulin coupled to Sepharose has provided a rapid and sensitive means of isolating a cyclic nucleotide phosphodiesterase activity which is stimulated by the calmodulin-Ca2+ complex, from rat parotid gland. Initial experiments established that phosphodiesterase activity sensitive to calmodulin and Ca2+ could not be demonstrated in crude extracts of rat parotid gland or after partial purification of rat parotid phosphodiesterase over DEAE-cellulose. However, it was possible to readily demonstrate the presence of a cyclic nucleotide phosphodiesterase activity regulated by calmodulin if the extracts were first purified by batch ion-exchange chromatography over DEAE-cellulose followed by affinity chromatography with calmodulin coupled to Sepharose. The batch ion-exchange chromatography step removed the major portion of free parotid calmodulin which could compete with calmodulin-coupled Sepharose for the proteins regulated by calmodulin. Thus, by employing an initial chromatography step over DEAE-cellulose to separate phosphodiesterase activity from calmodulin, it was possible to increase the recovery of calmodulin-sensitive phosphodiesterase after affinity chromatography with calmodulin coupled to Sepharose. This approach should be useful for demonstrating the presence of and for purifying other parotid proteins regulated by calmodulin.  相似文献   
30.
A procedure was developed for the detection of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in myelin. This assay was sufficiently sensitive to detect the low levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in human erythrocytes. The 2′,3′-cyclic nucleotide 3′-phosphohydrolase of human erythrocytes was determined to be exclusively associated with the inner (cytosolic) side of the membrane. Leaky ghostsand resealed ghosts were assayed for 2′,3′-cyclic nucleotide 3′-phosphohydrolase, (Ca2+/Mg2+-ATPase, and acetylcholinesterase activity, and the 2′,3′-cyclic nucleotide 3′-phosphohydrolase profile is the same as that of the (Ca2+/Mg2+)-ATPase, an established inner membrane maker.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号