首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   880篇
  免费   122篇
  国内免费   22篇
  1024篇
  2024年   3篇
  2023年   19篇
  2022年   9篇
  2021年   24篇
  2020年   38篇
  2019年   54篇
  2018年   43篇
  2017年   39篇
  2016年   42篇
  2015年   39篇
  2014年   51篇
  2013年   62篇
  2012年   28篇
  2011年   36篇
  2010年   39篇
  2009年   51篇
  2008年   55篇
  2007年   51篇
  2006年   53篇
  2005年   35篇
  2004年   40篇
  2003年   33篇
  2002年   23篇
  2001年   18篇
  2000年   11篇
  1999年   25篇
  1998年   18篇
  1997年   9篇
  1996年   6篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有1024条查询结果,搜索用时 0 毫秒
131.
Aim  To identify the factors that contribute to variation in abundance (population density), and to investigate whether habitat breadth and diet breadth predict macroecological patterns in a suborder of passerine birds (Meliphagoidea).
Location  Australia (including Tasmania).
Methods  Mean abundance data were collated from site surveys of bird abundance (the Australian Bird Count); range size and latitudinal position data from published distribution maps; and body mass and diet breadth information from published accounts. A diversity index of habitats used (habitat breadth) was calculated from the bird census data. We used bivariate correlation and multiple regression techniques, employing two phylogenetic comparative methods: phylogenetic generalized least squares and independent contrasts.
Results  Body mass and latitude were the only strong predictors of abundance, with larger-bodied and lower-latitude species existing at lower densities. Together, however, body mass and latitude explained only 11.1% of the variation in mean abundance. Range size and habitat breadth were positively correlated, as were diet breadth and body mass. However, neither range size, nor habitat breadth and diet breadth, explained patterns in abundance either directly or indirectly.
Main conclusions  Levels of abundance (population density) in meliphagoid birds are most closely linked to body mass and latitudinal position, but not range size. As with many other macroecological analyses, we find little evidence for aspects of niche breadth having an effect on patterns of abundance. We hypothesize that evolutionary age may also have a determining effect on why species tend to be rarer (less abundant) in the tropics.  相似文献   
132.
133.
Aim  We examine the effect of island area on body dimensions in a single species of primate endemic to Southeast Asia, the long-tailed macaque ( Macaca fascicularis ). In addition, we test Allen's rule and a within-species or intraspecific equivalent of Bergmann's rule (i.e. Rensch's rule) to evaluate body size and shape evolution in this sample of insular macaques.
Location  The Sunda Shelf islands of Southeast Asia.
Methods  Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results  We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions  The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule.  相似文献   
134.
Aim We analysed body‐size variation in relation to latitude, longitude, elevation and environmental variables in Ctenomys (tuco‐tucos), subterranean rodents in the Ctenomyidae (Caviomorpha). We tested the existence of inter‐ and intraspecific size clines to determine if these rodents follow Bergmann's rule, to compare intra‐ and interspecific size trends and to assess the relevance of the subterranean lifestyle on these trends. Location South America, south of 15° latitude. Methods This paper is based on 719 specimens of tuco‐tucos from 133 localities of Argentina, Bolivia, Chile, Paraguay, Peru and Uruguay, representing 47 named species and 32 undescribed forms. Intraspecific analyses were performed for Ctenomys talarum Thomas, 1898 and the Ctenomys perrensi Thomas, 1896 species complex. Head and body length and weight were used for estimating body size. Geographical independent variables included latitude, longitude and altitude. Environmental independent variables were mean minimal and maximal monthly temperature, mean annual temperature, mean minimal and maximal precipitation, and total annual precipitation. To estimate seasonality, the annual variability of the climatic factors was calculated as their coefficients of variation and the difference between maximum and minimum values. Mean annual actual evapotranspiration (AET), and mean annual, January (summer) and July (winter) potential evapotranspiration (PET) values were also calculated for each locality, as well as annual, summer and winter water balance (WB). Statistical analyses consisted of simple and multiple regression and nonparametric correlation. Results Body size of Ctenomys decreases interspecifically from 15°00′ S to 48°15′ S and from 56°33′ W to 71°46′ W, and is positively correlated with ambient temperature and precipitation. The best predictors of body size according to multiple regression analyses were mean annual temperature, the difference between mean maximum and minimum annual temperatures, annual PET, the difference between summer and winter PET, and annual and winter water balance. These patterns are repeated, but not identically, at a smaller geographical scale within the species C. talarum and the superspecies C. perrensi. Main conclusions Tuco‐tucos follow the converse to Bergmann's rule at the interspecific level. At the intraspecific level some parallel trends were observed, but the smaller scale of these analyses, involving a very reduced variation of environmental factors, necessitates caution in interpreting results. The subterranean lifestyle probably insulates these rodents from the external temperature. The observed latitudinal body‐size gradients are more probably related to seasonality, ambient energy, primary productivity and/or intensity of predation.  相似文献   
135.
Given the well‐documented fact that human body proportions covary with climate (presumably due to the action of selection), one would expect that the Ipiutak and Tigara Inuit samples from Point Hope, Alaska, would be characterized by an extremely cold‐adapted body shape. Comparison of the Point Hope Inuit samples to a large (n > 900) sample of European and European‐derived, African and African‐derived, and Native American skeletons (including Koniag Inuit from Kodiak Island, Alaska) confirms that the Point Hope Inuit evince a cold‐adapted body form, but analyses also reveal some unexpected results. For example, one might suspect that the Point Hope samples would show a more cold‐adapted body form than the Koniag, given their more extreme environment, but this is not the case. Additionally, univariate analyses seldom show the Inuit samples to be more cold‐adapted in body shape than Europeans, and multivariate cluster analyses that include a myriad of body shape variables such as femoral head diameter, bi‐iliac breadth, and limb segment lengths fail to effectively separate the Inuit samples from Europeans. In fact, in terms of body shape, the European and the Inuit samples tend to be cold‐adapted and tend to be separated in multivariate space from the more tropically adapted Africans, especially those groups from south of the Sahara. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
136.
The chain-breaking antioxidant activities of eight coumarins [7-hydroxy-4-methylcoumarin (1), 5,7-dihydroxy-4-methylcoumarin (2), 6,7-dihydroxy-4-methylcoumarin (3), 6,7-dihydroxycoumarin (4), 7,8-dihydroxy-4-methylcoumarin (5), ethyl 2-(7,8-dihydroxy-4-methylcoumar-3-yl)-acetate (6), 7,8-diacetoxy-4-methylcoumarin (7) and ethyl 2-(7,8-diacetoxy-4-methylcoumar-3-yl)-acetate (8)] during bulk lipid autoxidation at 37 °C and 80 °C in concentrations of 0.01–1.0 mM and their radical scavenging activities at 25 °C using TLC–DPPH test have been studied and compared. It has been found that the o-dihydroxycoumarins 36 demonstrated excellent activity as antioxidants and radical scavengers, much better than the m-dihydroxy analogue 2 and the monohydroxycoumarin 1. The substitution at the C-3 position did not have any effect either on the chain-breaking antioxidant activity or on the radical scavenging activity of the 7,8-dihydroxy- and 7,8-diacetoxy-4-methylcoumarins 6 and 8. The comparison with DL-α-tocopherol (TOH), caffeic acid (CA) and p-coumaric acid (p-CumA) showed that antioxidant efficiency decreases in the following sequence:  相似文献   
137.
A major macroevolutionary question concerns how long-term patterns of body-size evolution are underpinned by smaller scale processes along lineages. One outstanding long-term transition is the replacement of basal therapsids (stem-group mammals) by archosauromorphs, including dinosaurs, as the dominant large-bodied terrestrial fauna during the Triassic (approx. 252-201 million years ago). This landmark event preceded more than 150 million years of archosauromorph dominance. We analyse a new body-size dataset of more than 400 therapsid and archosauromorph species spanning the Late Permian-Middle Jurassic. Maximum-likelihood analyses indicate that Cope's rule (an active within-lineage trend of body-size increase) is extremely rare, despite conspicuous patterns of body-size turnover, and contrary to proposals that Cope's rule is central to vertebrate evolution. Instead, passive processes predominate in taxonomically and ecomorphologically more inclusive clades, with stasis common in less inclusive clades. Body-size limits are clade-dependent, suggesting intrinsic, biological factors are more important than the external environment. This clade-dependence is exemplified by maximum size of Middle-early Late Triassic archosauromorph predators exceeding that of contemporary herbivores, breaking a widely-accepted 'rule' that herbivore maximum size greatly exceeds carnivore maximum size. Archosauromorph and dinosaur dominance occurred via opportunistic replacement of therapsids following extinction, but were facilitated by higher archosauromorph growth rates.  相似文献   
138.
梅花鹿甲烷能代谢规律的研究   总被引:1,自引:1,他引:1  
李忠宽  张晓明 《兽类学报》1996,16(2):100-104
本文应用KB-1型呼吸测热装置,结合消化、代谢试验,对梅花鹿(Cervusnippon)甲烷能代谢规律进行了研究。结果表明,梅花鹿甲烷能的产生量随其采食量的增加而增加;也随着果食后时间的推移而减少,而且减少的幅度又随采食量的增加而下降;甲烷能的产生量分别占总能食入量、消化能食入量和体增热的6.61%、8.83%和10.88%;甲烷能的产生量随着日粮蛋白质水平的提高而降低,日粮蛋白质水平每提高1个百分点,甲烷能产生量就降低58.58kJ/d;分别以总能食入量(GEI)和干物质食入量(DMI)为自变量所建立的甲烷能(CH4E)估计分别为:CH4E(kJ/d)=0.07CEJ(kJ/d)-101.04(n=12,r=0.944,P<0.01)CH4E(kJ/d)=98.78+1.05DMI(g/d)(n=12,r=0.942,P<0.01)  相似文献   
139.
140.
Bergmann's rule predicts larger body sizes in species living in higher latitudes and altitudes. This rule appears to be valid for endotherms, but its relevance to ectotherm vertebrates has largely been debated. In squamate reptiles (lizards and snakes), only one study, based on Liolaemus species of the boulengeri clade, has provided phylogenetic evidence in favour of Bergmann's clines. We reassessed this model in the same lizard clade, using a more representative measure of species body size and including a larger number of taxa in the sample. We found no evidence to support Bergmann's rule in this lineage. However, these non-significant results appear to be explained only by the inclusion of further species rather than by a different estimation of body size. Analyses conducted on the 16 species included in the previous study always revealed significant relationships between body size and latitude-altitude, whereas, the enlarged sample always rejected the pattern predicted by Bergmann's rule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号