首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   880篇
  免费   122篇
  国内免费   22篇
  2024年   3篇
  2023年   19篇
  2022年   9篇
  2021年   24篇
  2020年   38篇
  2019年   54篇
  2018年   43篇
  2017年   39篇
  2016年   42篇
  2015年   39篇
  2014年   51篇
  2013年   62篇
  2012年   28篇
  2011年   36篇
  2010年   39篇
  2009年   51篇
  2008年   55篇
  2007年   51篇
  2006年   53篇
  2005年   35篇
  2004年   40篇
  2003年   33篇
  2002年   23篇
  2001年   18篇
  2000年   11篇
  1999年   25篇
  1998年   18篇
  1997年   9篇
  1996年   6篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
101.
The evolution of mutualisms presents a puzzle. Why does selection favour cooperation among species rather than cheaters that accept benefits but provide nothing in return? Here we present a general model that predicts three key factors will be important in mutualism evolution: (i) high benefit to cost ratio, (ii) high within‐species relatedness and (iii) high between‐species fidelity. These factors operate by moderating three types of feedback benefit from mutualism: cooperator association, partner‐fidelity feedback and partner choice. In defining the relationship between these processes, our model also allows an assessment of their relative importance. Importantly, the model suggests that phenotypic feedbacks (partner‐fidelity feedback, partner choice) are a more important explanation for between‐species cooperation than the development of genetic correlations among species (cooperator association). We explain the relationship of our model to existing theories and discuss the empirical evidence for our predictions.  相似文献   
102.
Recent empirical studies indicate that grandparents favour some categories of grandchildren over others. Here, we expand the previous theoretical foundation for this finding and show that grandchild-harming phenotypes are predicted to evolve by ‘sexually antagonistic zygotic drive (SA-zygotic drive) of the sex chromosomes’. We use the logic of Hamilton''s rule to develop a new ‘no-cost-to-self nepotism rule’ that greatly simplifies the determination of the invasion criteria for mutations that cause grandparents to harm grandchildren. We use this theory to generate predictions that distinguish SA-zygotic drive from theory based solely on paternity assurance. The major diagnostic prediction is that grandmothers, and to a lesser degree grandfathers, will evolve grandson-harming phenotypes that reduce the level of sib competition experienced by their more closely related granddaughters, especially in their sons'' families. This prediction is supported by data from recent studies showing (i) grandmothers invest more in granddaughters than grandsons, and counterintuitively, (ii) paternal grandmothers reduce the survival of their grandsons. We conclude that SA-zygotic drive is plausibly operating in humans via sexually antagonistic grandparental care.  相似文献   
103.
测量了杜氏盐藻不同生长期的静态荧光光谱,得出了杜氏盐藻生长规律曲线。通过与传统的分光光度计法和血球计数板法研究盐藻生长规律的比较发现,该方法反映的是活盐藻细胞浓度的变化情况,更能反映盐藻实际生长规律;不仅操作简便,灵敏度高,而且可以实现远距离非接触测量。  相似文献   
104.
Rapoport's rule claims that latitudinal ranges of plant and animal species are generally smaller at low than at high latitudes. However, doubts as to the generality of the rule have been expressed, because studies providing evidence against the rule are more numerous than those in support of it. In groups for which support has been provided, the trend of increasing latitudinal ranges with latitude is restricted to or at least most distinct at high latitudes, suggesting that the effect may be a local phenomenon, for example the result of glaciations. Here we test the rule using two models, a simple one-dimensional one with a fixed number of animals expanding in a northern or southerly direction only, and the evolutionary/ecological Chowdhury model using birth, ageing, death, mutation, speciation, prey-predator relations and food levels. Simulations with both models gave results contradicting Rapoport's rule. In the first, latitudinal ranges were roughly independent of latitude, in the second, latitudinal ranges were greatest at low latitudes, as also shown empirically for some well-studied groups of animals.  相似文献   
105.
The island rule and a research agenda for studying ecogeographical patterns   总被引:7,自引:4,他引:3  
We are currently experiencing a resurgence of interest in ecogeographical rules, which describe general trends in morphology and related traits along geographical gradients. In order to develop a more comprehensive understanding of the generality and underlying causal mechanisms for these patterns, we recommend a new, more integrated research agenda. In particular, we recommend studies that simultaneously consider different clines in morphology, geographical ranges and diversity as intricately related phenomena; all being ecological, evolutionary and biogeographical responses of organisms to selection regimes that vary non-randomly over space and time, and among species with different ecological and evolutionary histories.  相似文献   
106.
Using museum data of adult specimens whose sex, age, and locality are known, we studied temporal and geographical body size trends among the otter, Lutra lutra, in Norway. We found that body size of the otters increased during the last quarter of the twentieth century, and suggest that this trend is related to increased food availability from fish farming and possibly also to energy saving due to elevated sea temperatures. Birth year and death year explained 38.8 and 43.5%, respectively, of the variation in body size. Body size of otters was positively related to latitude, thus conforming to Bergmann’s rule.  相似文献   
107.
Han B  Choi JH  Dantzig JA  Bischof JC 《Cryobiology》2006,52(1):146-151
The latent heat during phase change of water-NaCl binary mixture was measured using a differential scanning calorimeter, and the magnitude for two distinct phase change events, water/ice and eutectic phase change, were analyzed considering the phase change characteristics of a binary mixture. During the analysis, the latent heat associated with each event was calculated by normalizing the amount of each endothermic peak with only the amount of sample participating in each event estimated from the lever rule for the phase diagram. The resulting latent heat of each phase change measured is 303.7 +/- 2.5 J/g for water/ice phase change, and 233.0 +/- 1.6 J/g for eutectic phase change, respectively regardless of the initial concentration of mixture. Although the latent heats of water/ice phase change in water-NaCl mixtures are closely correlated, further study is warranted to investigate the reason for smaller latent heat of water/ice phase change than that in pure water (335 J/g). The analysis using the lever rule was extended to estimate the latent heat of dihydrate as 115 J/g with the measured eutectic and water/ice latent heat values. This new analysis based on the lever rule will be useful to estimate the latent heat of water-NaCl mixtures at various concentrations, and may become a framework for more general analysis of latent heat of various biological solutions.  相似文献   
108.
Abstract: Directed evolution of life through millions of years, such as increasing adult body size, is one of the most intriguing patterns displayed by fossil lineages. Processes and causes of such evolutionary trends are still poorly understood. Ammonoids (externally shelled marine cephalopods) are well known to have experienced repetitive morphological evolutionary trends of their adult size, shell geometry and ornamentation. This study analyses the evolutionary trends of the family Acrochordiceratidae Arthaber, 1911 from the Early to Middle Triassic (251–228 Ma). Exceptionally large and bed‐rock‐controlled collections of this ammonoid family were obtained from strata of Anisian age (Middle Triassic) in north‐west Nevada and north‐east British Columbia. They enable quantitative and statistical analyses of its morphological evolutionary trends. This study demonstrates that the monophyletic clade Acrochordiceratidae underwent the classical evolute to involute evolutionary trend (i.e. increasing coiling of the shell), an increase in its shell adult size (conch diameter) and an increase in the indentation of its shell suture shape. These evolutionary trends are statistically robust and seem more or less gradual. Furthermore, they are nonrandom with the sustained shift in the mean, the minimum and the maximum of studied shell characters. These results can be classically interpreted as being constrained by the persistence and common selection pressure on this mostly anagenetic lineage characterized by relatively moderate evolutionary rates. Increasing involution of ammonites is traditionally interpreted by increasing adaptation mostly in terms of improved hydrodynamics. However, this trend in ammonoid geometry can also be explained as a case of Cope’s rule (increasing adult body size) instead of functional explanation of coiling, because both shell diameter and shell involution are two possible paths for ammonoids to accommodate size increase.  相似文献   
109.
The temperature size rule (TSR) is the tendency for ectotherms to develop faster but mature at smaller body sizes at higher temperatures. It can be explained by a simple model in which the rate of growth or biomass accumulation and the rate of development have different temperature dependence. The model accounts for both TSR and the less frequently observed reverse-TSR, predicts the fraction of energy allocated to maintenance and synthesis over the course of development, and also predicts that less total energy is expended when developing at warmer temperatures for TSR and vice versa for reverse-TSR. It has important implications for effects of climate change on ectothermic animals.  相似文献   
110.
A major macroevolutionary question concerns how long-term patterns of body-size evolution are underpinned by smaller scale processes along lineages. One outstanding long-term transition is the replacement of basal therapsids (stem-group mammals) by archosauromorphs, including dinosaurs, as the dominant large-bodied terrestrial fauna during the Triassic (approx. 252-201 million years ago). This landmark event preceded more than 150 million years of archosauromorph dominance. We analyse a new body-size dataset of more than 400 therapsid and archosauromorph species spanning the Late Permian-Middle Jurassic. Maximum-likelihood analyses indicate that Cope's rule (an active within-lineage trend of body-size increase) is extremely rare, despite conspicuous patterns of body-size turnover, and contrary to proposals that Cope's rule is central to vertebrate evolution. Instead, passive processes predominate in taxonomically and ecomorphologically more inclusive clades, with stasis common in less inclusive clades. Body-size limits are clade-dependent, suggesting intrinsic, biological factors are more important than the external environment. This clade-dependence is exemplified by maximum size of Middle-early Late Triassic archosauromorph predators exceeding that of contemporary herbivores, breaking a widely-accepted 'rule' that herbivore maximum size greatly exceeds carnivore maximum size. Archosauromorph and dinosaur dominance occurred via opportunistic replacement of therapsids following extinction, but were facilitated by higher archosauromorph growth rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号