首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1841篇
  免费   15篇
  国内免费   16篇
  2023年   5篇
  2022年   19篇
  2021年   14篇
  2020年   14篇
  2019年   9篇
  2018年   23篇
  2017年   12篇
  2016年   15篇
  2015年   31篇
  2014年   99篇
  2013年   94篇
  2012年   80篇
  2011年   121篇
  2010年   110篇
  2009年   80篇
  2008年   98篇
  2007年   115篇
  2006年   98篇
  2005年   112篇
  2004年   83篇
  2003年   46篇
  2002年   44篇
  2001年   15篇
  2000年   39篇
  1999年   40篇
  1998年   38篇
  1997年   35篇
  1996年   35篇
  1995年   25篇
  1994年   32篇
  1993年   30篇
  1992年   33篇
  1991年   30篇
  1990年   34篇
  1989年   23篇
  1988年   19篇
  1987年   19篇
  1986年   17篇
  1985年   17篇
  1984年   19篇
  1983年   10篇
  1982年   13篇
  1981年   7篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   6篇
  1976年   2篇
排序方式: 共有1872条查询结果,搜索用时 15 毫秒
21.
Summary Immuno-electron microscopy confirms that the scolopale, a characteristically prominent cytoskeletal element of insect scolopidia, is composed mainly of actin filaments. Immunohistochemistry reveals that these filaments are co-localized with tropomyosin. Myosin S1-decoration shows that their polarity is unidirectional. Antibodies to -actinin do not bind within the scolopale. The association of these actin filaments with tropomyosin in the absence of myosin, together with their uniform polarity, strongly suggests that, in the scolopale, they have a stabilizing rather than contractile function. Filament elasticity would appear to be important for stimulation. The degree of elasticity may well be governed by the extent of tropomyosin binding.  相似文献   
22.
The mechanism by which sub-cortical actin bundles and membranous organelles are immobilised in the cortical cytoplasm of the alga Chara was studied by perfusing cells with a solution containing 1% Triton X-100. Light and scanning electron microscopy and the release of starch grains and chlorophyll-protein complexes indicated that the detergent extensively solubilised the chloroplasts. However, the sub-cortical actin bundles remained in situ even though they were originally separated from the plasma membrane by the chloroplasts. A fibrous layer between chloroplasts and plasma membrane became readily visible after detergent extraction of the cells and could be released by low-ionic-strength ethylenediaminetetraacetic acid, thioglycollate and trypsin. The same treatments applied to cells not subject to detergent extraction released the membrane-bound organelles and actin bundles and no fibrous meshwork was visible on subsequent extraction with Triton. It is, therefore, concluded that a detergent-insoluble cortical cytoskeleton exists and contributes to the immobility of the actin and cortical organelles in the cells.Abbreviation EDTA ethylenediaminetetraacetic acid  相似文献   
23.
We previously observed that the neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) binds with high- and low-affinity interactions to an actin-like protein prepared from rat brain synaptosomes. In this study, we examined its binding to highly purified actin obtained from rabbit skeletal muscle. Monomeric G-actin bound serotonin with high and low affinities, exhibiting equilibrium dissociation constants (KD values) of 5 X 10(-5) M and 4 X 10(-3) M, respectively. The serotonin binding site on actin was distinct from those sites previously characterized for divalent cations, nucleotides, and cytochalasin alkaloids. The binding of serotonin (1 microM) to G-actin was increased as much as 26-fold by divalent cations. Potassium iodine (KI) increased the affinity of G-actin for serotonin, KD values for this binding being 3 X 10(-7) M and X 10(-5) M. Serotonin bound with even higher affinity to polymerized F-actin, with KD values of 2 X 10(-8) M and 2 X 10(-5) M. However, the total number of binding sites on F-actin was only about 4% of the number of G-actin. The binding of serotonin (0.1 microM) to G-actin could be inhibited by phenothiazines (1 microM) or reserpine (10 microM), but not by classical antagonists of serotonin receptors or by drugs that release serotonin or inhibit its uptake. The binding of serotonin to actin in vivo may participate in a contractile process related to neurotransmitter release.  相似文献   
24.
A rat pheochromocytoma (PC12) cell line was used to examine the possibility that 5-hydroxytryptamine (serotonin), 3,4-dihydroxyphenylethylamine (dopamine), or noradrenaline may be associated with cytoplasmic actin, as was suggested by previous in vitro binding studies on an actin-like protein from rat brain synaptosomes. When PC12 cells were incubated with [3H]serotonin. [3H]dopamine, or [3H]noradrenaline for 30 min at 37 degrees C, approximately 2-4% of the radioactivity present in the cells was found to be associated with a high-molecular-weight (actin-like) component in supernatant fractions. Evidence relating this monoamine binding component to actin filaments includes: (a) its strong absorption by myosin filaments at low ionic strength: (b) a decrease in its affinity for myosin in the presence of 1 mM ATP, which lowers the affinity of authentic actin for myosin: (c) displacement of bound [3H]serotonin from it by DNase I, which binds strongly to actin and which inhibits [3H]serotonin binding to actin in vitro; (d) an increase in its binding of each monoamine (by 25-40%) after PC12 cells were preincubated with 10 microM cytochalasin B (a drug that induces depolymerization of F-actin). These findings suggest that serotonin, dopamine, or noradrenaline may associate with actin filaments in vivo.  相似文献   
25.
Abstract: After the goldfish optic nerve was crushed, the total amount of protein in the nerve decreased by about 45% within 1 week as the axons degenerated, began to recover between 2 and 5 weeks as axonal regeneration occurred, and had returned to nearly normal by 12 weeks. Corresponding changes in the relative amounts of some individual proteins were investigated by separating the proteins by two-dimensional gel electrophoresis and performing a quantitative analysis of the Coomassie Brilliant Blue staining patterns of the gels. In addition, labelling patterns showing incorporation of [3H]proline into individual proteins were examined to differentiate between locally synthesized proteins (presumably produced mainly by the glial cells) and axonal proteins carried by fast or slow axonal transport. Some prominent nerve proteins, ON1 and ON2 (50–55 kD, pI ~6), decreased to almost undetectable levels and then reappeared with a time course corresponding to the changes in total protein content of the nerve. Similar changes were seen in a protein we have designated NF (~130 kD, pI ~5.2). These three proteins, which were labelled in association with slow axonal transport, may be neurofilament constituents. Large decreases following optic nerve crush were also seen in the relative amounts of α- and β-tubulin, which suggests that they are localized mainly in the optic axons rather than the glial cells. Another group of proteins, W2, W3, and W4 (35–45 kD, pI 6.5–7.0), which showed a somewhat slower time course of disappearance and were intensely labelled in the local synthesis pattern, may be associated with myelin. A small number of proteins increased in relative amount following nerve crush. These included some, P1 and P2 (35–40 kD, pIs 6.1–6.2) and NT (~50 kD, pI ~5.5), that appeared to be synthesized by the glial cells. Increases were also seen in one axonal protein, B (~45 kD, pI ~4.5), that is carried by fast axonal transport, as well as in two axonal proteins, HA1 and HA2 (~60 and 65 kD respectively, pIs 4.5–5.0), that are carried mainly by slow axonal transport. Other proteins, including actin, that showed no net changes in relative amount (but presumably changed in absolute amount in direct proportion to the changes in total protein content of the nerve), are apparently distributed in both the neuronal and nonneuronal compartments of the nerve.  相似文献   
26.
Summary The actin-activated ATPase activityPhysarum myosin was shown to be inhibited of M levels of Ca2+. To determine if Ca2+ regulates ATP-dependent movement ofPhysarum myosin on actin, latex beads coated withPhysarum myosin were introduced intoChara cells by intracellular perfusion. In perfusion solution containing EGTA, the beads moved along the parallel arrays ofChara actin filaments at a rate of 1.0–1.8 m/sec; however, in perfusion solution containing Ca2+, the rate reduced to 0.0–0.7 m/sec. The movement of beads coated with scallop myosin, whose actin-activated ATPase activity is activated by Ca2+, was observed only in the perfusion solution containing Ca2+, indicating that myosin is responsible for the inhibitory effect of Ca2+ onPhysarum myosin movement. The involvement of this myosin-linked regulation in the inhibitory effect of Ca2+ on the cytoplasmic streaming observed inChara internodal cell andPhysarum plasmodium was discussed.Abbreviations ATP adenosine 5-triphosphate - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycolbis(-aminoethylether) N,N,N,N-tetraacetic acid - PIPES piperazine-N,N-bis(2-ethanesulfonic acid)  相似文献   
27.
Summary Monoclonal antibodies (mcab) were produced in vitro by fusing mouse X63-Ag8.653 plasmacytoma cells with spleen cells from a Balb/c mouse immunized with primary cultures of chick skeletal muscle (pmcc). After cloning on agar, stable clones were obtained, the antibodies of which stain specifically the I-band of myofibrils in the immunofluorescence (IF) procedure. For further characterization of these mcab their affinities to muscle proteins were tested by immunoblotting and by enzyme-linked immunosorbent assay (ELISA). Mcab specific for actin were revealed by these criteria. One of the anti-actin antibodies, mcab 647, reveals a variety of IF-staining patterns on myofibrils. On rest-length myofibrils the I-band is labeled only. However, at sarcomere lengths below 2 m, where the thin filaments meet in the middle of the A-band and form a region of double overlap, an additional fluorescent band appears in this position. The fluorescence intensity of this band is increased significantly in shorter sarcomeres. Finally, when the I-band has disappeared at a sarcomere length of 1.5 m, fluorescence is located exclusively in the middle of the A-band. These IF-staining patterns suggest that only those sections of the thin filament are stained that do not participate in actomyosin crossbridges.  相似文献   
28.
Abstract: We examined correlations among growth kinetics, cell shape, and cytoskeletal protein content in rat astrocytes grown in primary culture. Cell suspensions from brains of newborn rats were seeded at densities from 0.2 to 3 × 105/cm2. At initial densities above 1 × 105 the population increased to reach confluency by 10–12 days, after which cell number remained stable for many weeks. At low initial densities, 0.2–0.4 × 105/cm2, cells did not increase in number. Final density increased with increasing plating densities. High-density cells had small perikarya and several long cytoplasmic processes; low-density cells appeared flat and polygonal. All cultures were almost entirely astrocytic, as judged by immunofluorescent staining with antiserum against glial fibrillary acidic protein (GFAP). Cytoskeletal proteins were analyzed by gel electrophoresis after extraction from cells with nonionic detergent. Relative amounts of the proteins differed, in that low-density cells contained large amounts of cytoskeletal actin relative to the intermediate filament (IF) proteins vimentin and GFAP, whereas high-density cells contained relatively less actin and more IF proteins. Such differences in cytoskeletal proteins between the high- and low-density cultures were mirrored in the relative rates of synthesis of the cytoskeletal proteins. In the low-density cells amino acid incorporation into cytoskeletal-associated actin was more active than that into the IFs, whereas in the high-density cells higher rates of IF protein synthesis were observed.  相似文献   
29.
D. Menzel 《Protoplasma》1986,134(1):30-42
Summary The cytoskeleton in the siphonous, marine green algaAcetabularia is visualized by immunocytochemistry using antibodies against plant alfa tubulin and animal smooth muscle actin. In the vegetative phase of the life cycle, when the cell grows a cylindrical stalk and until the reproductive cap is completed, actin forms continuous, parallel bundles that extend through the entire length of the stalk and cap rays respectively. Microtubules (MTs) cannot be detected until the primary nucleus, located in the rhizoid of the giant cell, divides to form thousands of secondary nuclei. MTs can then be seen radiating from each secondary nucleus that is encountered in the stalk on its migration upwards into the cap rays. They are oriented mostly parallel to the long axis of the cell. At arrival in the cap rays up to the white spot stage, when nuclei assume equidistant positions in the cap ray cytoplasm, a radiating system of MTs forms around each nucleus and dramatically increases until impressive radial arrays have developed. This phase coincides with a disappearance of actin bundles in the cap rays, but they are retained in the stalk cytoplasm. Shortly after that additional MTs appear around the disk like partitions of cap ray cytoplasm. Concomitantly, bundles of actin reappear colinearly with the circumferrential MTs eventually forming complete rings around each disk of cap ray cytoplasm. During this process the compartments of the future cysts are gradually bulging outwards and simultaneously the rings of actin sink inwards until domes are formed with the nuclei fixed in the top centers of the domes. At this stage the peripheral areas of the radiating MT systems around the nuclei start to break down, whereas the circumferrential MT systems remain intact. Subsequently, the rings of both actin and MTs decrease in diameter, and finally contract to a spot opposite the nucleus, while the cysts continue to develop their oval shape. After the cysts have become separated, they round up and enter several rounds of nuclear divisions. MTs form short radial arrays around each nucleus with minor changes due to a reduction of MTs during division followed by a reappearance after completion of each division. Actin is rearranged in the cysts to a cortical network of randomly oriented, short bundles, that is maintained until gamete formation sets in.These findings accentuate the involvement of Cytoskeletal elements in the key steps of morphogenesis inAcetabularia to an extent that is unknown in higher plants.  相似文献   
30.
Summary A monoclonal antibody against pea-leaf calmodulin was used to localise this calcium-binding protein on frozen sections of compound eyes of several arthropod species and on nitrocellulose replicas of electrophoretically separated peptides of isolated photoreceptor membrane from crayfish, fly, and squid. We report the presence of immunochemically detectable amounts of calmodulin specifically associated with the photoreceptor microvilli of rhabdomeral photoreceptors. A weak immunofluorescent signal was also observed in the cytoplasm of retinula cells. The presence of calmodulin in rhabdomeral microvilli is discussed in view of its possible implication in phototransduction and/or involvement in cytoskeletal structures associated with photoreceptor membranes in invertebrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号