首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   10篇
  92篇
  2021年   3篇
  2020年   2篇
  2019年   7篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   6篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   7篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1993年   2篇
排序方式: 共有92条查询结果,搜索用时 0 毫秒
21.
Corals, considered the rainforests of the oceans, harbour an abundance of different bacterial populations throughout the coral structure. In the present study we attempted to characterize the cultivable bacterial population associated within the mucus and tissue of the coral Acropora digitifera from the Gulf of Mannar. 16S rRNA gene was amplified from the cultured mucus and tissue isolates. Amplified ribosomal DNA restriction analysis, performed with a combination of restriction enzymes to determine the polymorphic groups of bacteria, generated 19 distinct groups in the coral mucus and 17 distinct groups in the coral tissue. Phylogenetic analyses based on the full-length sequences of 16S rRNA gene sequences showed that the majority of bacterial isolates belonged to the group Firmicutes , followed by Gammaproteobacteria and Actinobacteria . On investigating their antimicrobial activity, mucus isolates showed about 25% activity and tissue isolates showed 48% activity. This study revealed the presence of actinomycetes in both the coral mucus and the coral tissue, which had high activity against pathogens. This study, for the first time, demonstrates that actinomycetes existing within corals also have potential antibacterial activity. This has been overlooked so far, and indicates that, in addition to mucus, bacteria within the tissue of corals might defend the coral host against pathogens.  相似文献   
22.
The effects of decreased pH, caused by carbon dioxide (CO2) dissolution in seawater (known as ocean acidification (OA)), on the development of newly fertilized eggs of the Caribbean reef-building coral, Acropora palmata, was tested in three experiments conducted during the summers of 2008 and 2009 (two repeats). Three levels of CO2 enrichment were used: present day conditions (400?µatm, pH 8.1) and two CO2-enriched conditions (700?µatm, pH 7.9, and 1000?µatm, pH 7.7). No effects on the progression or timing of development, or embryo and larval size, were detected in any of the three experimental runs. The results show that the embryos and larvae of A. palmata are able to develop normally under seawater pH of at least 0.4 pH units lower than the present levels. Acropora palmata larvae do not usually begin to calcify after settlement, so this study only examined the non-calcifying part of the life cycle of this species. Most of the concern about the effects of OA on marine organisms centers on its effect on calcification. Negative effects of OA on the embryonic development of this species were not found and they may not manifest until the newly settled polyps begin to calcify.  相似文献   
23.
24.
Ecological research within coral reefs often requires the use of anesthetics to immobilize organisms. It is therefore important to consider the effect of these chemicals on the surrounding flora and fauna, particularly to the corals themselves. We quantified the effects of clove oil, a commonly used fish anesthetic, on the growth and occurrence of bleaching in three species of corals: Acropora striata, Pocillopora verrucosa, and Porites australiensis. We compared coral responses to five treatments: a gradient of four clove oil concentrations (0-28%) in seawater, and one concentration of clove oil (14%) in ethanol. Each week, we assessed the presence of bleaching, and then applied the treatment. We measured growth over the duration of the 6-week experiment using the buoyant weight technique. Growth and bleaching showed a dose response to clove oil exposure, and the use of ethanol as a solvent had an additional deleterious effect, as also suggested by observed changes in concentrations of eugenol following field application. Overall, growth was reduced by 37.6% at the highest concentration (28% clove oil in seawater) relative to the control (0% clove oil). The reduction in growth was nearly as great (35.3% of the control) at half the concentration of clove oil (14%) when dissolved in ethanol. These results suggest the repeated use of clove oil (even without a solvent) can deleteriously affect corals.  相似文献   
25.
Abstract Coral reef degradation has been widely reported for the past 20 years. Because the recovery rate is usually low, various methods of restoration have been explored in different regions of the world. Among the effective and commonly used methods to restore coral communities is the transplantation of coral colonies or fragments. In this investigation fragments of Acropora pulchra were used in a semiprotected nursery in southern Taiwan between 1996 and 1998 to test, in situ, the possible effects of different factors on the generation of new branches and the initial skeletal extension rates of transplants. The variables under study here were the origin and length of the fragments, their new orientation, presence of tissue injury, and position in the fragment. All these factors were found to make a difference in either one or both aspects of coral growth (i.e., branching frequency and skeletal extension rate). These two factors clearly determine the success rate of a small fragment developing into a large colony that has a much higher probability to survive and grow on its own. It is now obvious that the efficiency of coral generation through fragment culture can be enhanced if the variables examined here are taken into consideration. Once coral colonies are formed, they can be fragmented again to generate more corals or can be transplanted to a suitable site.  相似文献   
26.
Acroporid white syndrome, a disease-like syndrome from the Great Barrier Reef, results from degenerative host tissue at lesion borders. Tissue preceding lesion borders appears visually healthy, but it is currently unclear whether the endosymbiotic zooxanthellae (Symbiodinium) are physiologically impacted. Compared to healthy colonies, this study found no significant differences in symbiont density, mitotic index or chlorophyll a content in tissue bordering (0 cm), and 8 cm away from white syndrome lesions. Using chlorophyll a fluorescence techniques, the border tissue did not appear to be photosynthetically compromised, and Symbiodinium extracted from this area were photosynthetically competent. Transmission electron microscopy revealed extensive degeneration of host tissues surrounding symbionts in affected areas, however, Symbiodinium cells were structurally intact with no sign of in situ degradation. Collectively, these results suggest that Symbiodinium at white syndrome lesion borders exist in a dynamic intra-cellular state during active host tissue loss, yet remain physiologically uncompromised.  相似文献   
27.
Reef-building corals often possess high levels of intraindividual and intraspecific ribosomal DNA (rDNA) variation that is largely polyphyletic between closely related species. Polyphyletic rDNA phylogenies coupled with high intraindividual rDNA variation have been taken as evidence of introgressive hybridization in corals. Interpreting the data is problematic because the rDNA cluster evolves in a complex fashion and polyphyletic lineages can be generated by a variety of processes--such as incomplete lineage sorting and slow concerted evolution--in addition to hybridization. Using the genetically characterized Caribbean Acropora hybridization system, we evaluate how well rDNA data perform in revealing patterns of recent introgressive hybridization in contrast to genetic data from four single-copy loci. While the rDNA data are broadly consistent with the unidirectional introgression seen in other loci, we show that the phylogenetic signature of recent introgressive hybridization is obscured in the Caribbean Acropora by ancient shared rDNA lineages that predate the divergence of the species.  相似文献   
28.
Evolutionary rescue of populations depends on their ability to produce phenotypic variation that is heritable and adaptive. DNA mutations are the best understood mechanisms to create phenotypic variation, but other, less well‐studied mechanisms exist. Marine benthic foundation species provide opportunities to study these mechanisms because many are dominated by isogenic stands produced through asexual reproduction. For example, Caribbean acroporid corals are long lived and reproduce asexually via breakage of branches. Fragmentation is often the dominant mode of local population maintenance. Thus, large genets with many ramets (colonies) are common. Here, we observed phenotypic variation in stress responses within genets following the coral bleaching events in 2014 and 2015 caused by high water temperatures. This was not due to genetic variation in their symbiotic dinoflagellates (Symbiodiniumfitti”) because each genet of this coral species typically harbours a single strain of S. fitti”. Characterization of the microbiome via 16S tag sequencing correlated the abundance of only two microbiome members (Tepidiphilus, Endozoicomonas) with a bleaching response. Epigenetic changes were significantly correlated with the host's genetic background, the location of the sampled polyps within the colonies (e.g., branch vs. base of colony), and differences in the colonies’ condition during the bleaching event. We conclude that long‐term microenvironmental differences led to changes in the way the ramets methylated their genomes, contributing to the differential bleaching response. However, most of the variation in differential bleaching response among clonemates of Acropora palmata remains unexplained. This research provides novel data and hypotheses to help understand intragenet variability in stress phenotypes of sessile marine species.  相似文献   
29.
Identification of fossil corals is often limited due to poor preservation of external skeleton morphology, especially in the genus Acropora which is widespread across the Indo‐Pacific. Based on skeleton characteristics from thin section, we here develop a link between the internal skeleton structure and external morphology. Ten characteristics were summarized to distinguish Acropora and five related genera, including the type and differentiation of corallites, the skeleton nature of corallites (septa, columellae, dissepiments, wall), and calcification centers within septa. Acropora is distinctive for its dimorphic corallites: axial and radial. Isopora is similar to Acropora but possess more than a single axial corallites. Montipora and Astreopora (family Acroporidae) have monomorphic corallites and a synapticular ring wall, with clustered calcification center in the former and medial lines in the latter. Pocillopora and Porties are classified by distinctive dissepiments, columellae and septa. These microstructural skeleton characteristics were effective in the genus identification of fossil corals from drilled cores in the South China Sea. Eighteen detailed characteristics (ten of axial corallites, four of radial corallites, and four of coenosteum) were used in the Acropora species classification. The axial corallites size and structure (including corallite diameter, synapticular rings, and septa), the septa of radial corallites, and the arrangement of coenosteum were critical indicators for species identification. This identification guide can help paleoenvironmental and paleoecological analyses and modern coral reef conservation and restoration.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号