首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   110篇
  国内免费   18篇
  2024年   4篇
  2023年   36篇
  2022年   27篇
  2021年   27篇
  2020年   36篇
  2019年   52篇
  2018年   44篇
  2017年   56篇
  2016年   37篇
  2015年   25篇
  2014年   63篇
  2013年   89篇
  2012年   20篇
  2011年   26篇
  2010年   18篇
  2009年   20篇
  2008年   26篇
  2007年   30篇
  2006年   14篇
  2005年   17篇
  2004年   17篇
  2003年   15篇
  2002年   15篇
  2001年   5篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   13篇
  1984年   8篇
  1983年   7篇
  1982年   9篇
  1981年   5篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
排序方式: 共有827条查询结果,搜索用时 15 毫秒
51.
Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics—kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°–90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.  相似文献   
52.
OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1–L2, L3–L4 and L4–L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository.  相似文献   
53.
Site-specific variation of collagen fibril orientations can affect cartilage stresses in knee joints. However, this has not been confirmed by 3-D analyses. Therefore, we present a novel method for evaluation of the effect of patient-specific collagen architecture on time-dependent mechanical responses of knee joint cartilage during gait. 3-D finite element (FE) models of a human knee joint were created with the collagen architectures obtained from T2 mapped MRI (patient-specific model) and from literature (literature model). The effect of accuracy of the implementation of collagen fibril architecture into the model was examined by using a submodel with denser FE mesh. Compared to the literature model, fibril strains and maximum principal stresses were reduced especially in the superficial/middle regions of medial tibial cartilage in the patient-specific model after the loading response of gait (up to ?413 and ?26%, respectively). Compared to the more coarsely meshed joint model, the patient-specific submodel demonstrated similar strain and stress distributions but increased values particularly in the superficial cartilage regions (especially stresses increased >60%). The results demonstrate that implementation of subject-specific collagen architecture of cartilage in 3-D modulates location- and time-dependent mechanical responses of human knee joint cartilage. Submodeling with more accurate implementation of collagen fibril architecture alters cartilage stresses particularly in the superficial/middle tissue.  相似文献   
54.
The use of exoskeletons as an aid for people with musculoskeletal disorder is the subject to an increasing interest in the research community. These devices are expected to meet the specific needs of users, such as children with cerebral palsy (CP) who are considered a significant population in pediatric rehabilitation. Although these exoskeletons should be designed to ease the movement of people with physical shortcoming, their design is generally based on data obtained from healthy adults, which leads to oversized components that are inadequate to the targeted users. Consequently, the objective of this study is to custom-size the lower limb exoskeleton actuators based on dynamic modeling of the human body for children with CP on the basis of hip, knee, and ankle joint kinematics and dynamics of human body during gait. For this purpose, a multibody modeling of the human body of 3 typically developed children (TD) and 3 children with CP is used. The results show significant differences in gait patterns especially in knee and ankle with respectively 0.39 and ?0.33 (Nm/kg) maximum torque differences between TD children and children with CP. This study provides the recommendations to support the design of actuators to normalize the movement of children with CP.  相似文献   
55.
目的:研究关节镜下前交叉韧带(ACL)重建术的手术时机对患者膝关节功能恢复的影响。方法:选取2016年1月至2017年8月我院收治的膝关节ACL损伤患者65例为研究对象,所有患者均接受关节镜下ACL重建术治疗,并按照患者受伤至接受手术的时间分为研究组(n=35,受伤至接受手术的时间≤3周)和对照组(n=30,受伤至接受手术的时间3周),术后对患者进行为期6个月的随访,对比两组患者术前和术后6个月的膝关节活动度、膝关节功能以及ACL恢复情况,并比较随访期间两组并发症发生情况。结果:术前,两组膝关节活动度、国际膝关节文献委员会膝关节评估表(IKDC)和Lysholm膝关节评分比较差异无统计学意义(P0.05),术后6个月,两组膝关节活动度、IKDC评分和Lysholm膝关节评分均较术前升高,且研究组高于对照组,差异有统计学意义(P0.05)。术前与术后6个月,两组前抽屉(ADT)试验和Lachman试验阴性率比较差异无统计学意义(P0.05),但与术前比较,术后6个月两组ADT试验和Lachman试验阴性率均升高,差异有统计学意义(P0.05)。与对照组比较,研究组并发症总发生率降低,差异有统计学意义(P0.05)。结论:膝关节ACL损伤患者在不同时间内接受关节镜下ACL重建术治疗均具有较好的效果,但是在受伤后3周内接受手术对患者膝关节功能恢复效果更明显,同时并发症发生率也相对更低。  相似文献   
56.
The study presents a screening method used to identify the influential parameters of a lower limb model including ligaments, at low numerical cost. Concerning multibody kinematics optimisation, the ligament parameters (isometric length) were found the most influential ones in a previous study. The screening method tested if they remain influential with minimised length variations. The most important parameters for tibiofemoral kinematics were the skin markers, segment lengths and joint parameters, including two ligaments. This was confirmed by a quantitative sensitivity analysis. The screening method has the potential to be used as a stand-alone procedure for a sensitivity analysis.  相似文献   
57.
长白落叶松(Larix olgensis)是我国东北重要的用材树种,根据生长和木材性状对其进行综合选择至关重要。本研究以吉林省延边自治区汪清林业局32年生的49个长白落叶松半同胞家系为材料,对其9个生长性状(树高、地径、胸径、3 m径、材积、尖削度、冠幅、分枝角和通直度)和4个木材性状(木材基本密度、管胞长度、管胞宽度和管胞长宽比)进行测定与分析。结果表明:不同变异来源间所有性状差异均达极显著水平(P<0.01);各性状家系遗传力均较高(0.51~0.96);表型变异系数为3.04%(分枝角)~23.15%(冠幅);各性状相关系数为-0.367(管胞宽度与管胞长宽比)~0.994(胸径与材积);主成分分析结果表明,4个主成分的累计贡献率达到78.46%,包含了家系生长性状和木材性状的大部分信息;分别以生长和木材性状对家系进行综合评价,初步筛选出5个生长性状优良家系(S78、S81、S80、S84和S83)和5个木材性状优良家系(S37、S51、S6、S30和S19),结合生长和木材性状初步筛选出5个优良家系(S89、S74、S76、S82和S83)。本研究初选的材料可以为良种选育提供基础,亲本可以为改良种子园营建提供材料。  相似文献   
58.
Temporomandibular joint (TMJ) disorders affect up to 12% of the human population, and naturally occurring TMJ diseases are increasingly recognized in animals. The TMJ disc plays a major role in TMJ disorders in people, but little is known about its role in TMJ pathology in animals. This study characterizes differences in properties of equine TMJ discs associated with age, disc region, and presence of TMJ osteoarthritis (OA). Discs were dissected from both TMJ’s of sixteen horses euthanized for reasons unrelated to this study. Each joint was grossly evaluated and scored as normal, mild OA, or severe OA. Samples from the rostral, caudal, lateral, central, and medial regions of the disc were subject to compressive testing, quantitative biochemistry, and histology. Samples from the lateral, central, and medial region were tested for tensile properties in the rostrocaudal and mediolateral directions. We found that the equine TMJ disc is highly anisotropic, and its glycosaminoglycan (GAG) content and compressive stiffness vary between disc regions. The disc also exhibits increasing GAG content and compressive stiffness with increasing age. While equine TMJ disc properties are generally similar to other herbivores, greater compressive stiffness throughout the disc and greater GAG content in its rostral region suggest that mechanical demands on the TMJ disc differ between horses and other species. Importantly, a region-specific decrease in compressive stiffness was observed associated with joint disease and corresponded to cartilage erosions in the underlying condylar surface.  相似文献   
59.
Low amplitude mechanical noise vibration has been shown to improve somatosensory acuity in various clinical groups with comparable deficiencies through a phenomenon known as Stochastic Resonance (SR). This technology showed promising outcomes in improving somatosensory acuity in other clinical patients (e.g., Parkinson’s disease and osteoarthritis). Some degree of chronic somatosensory deficiency in the knee has been reported following anterior cruciate ligament (ACL) reconstruction surgery. In this study, the effect of the SR phenomenon on improving knee somatosensory acuity (proprioception and kinesthesia) in female ACL reconstructed (ACLR) participants (n = 19) was tested at three months post-surgery, and the results were compared to healthy controls (n = 28). Proprioception was quantified by the measure of joint position sense (JPS) and kinesthesia with the threshold to detection of passive movement (TDPM).The results based on the statistical analysis demonstrated an overall difference between the somatosensory acuity in the ACLR limb compared to healthy controls (p = 0.007). A larger TDPM was observed in the ACLR limb compared to the healthy controls (p = 0.002). However, the JPS between the ACLR and healthy limbs were not statistically significantly different (p = 0.365). SR significantly improved JPS (p = 0.006) while the effect was more pronounced in the ACLR cohort. The effect on the TDPM did not reach statistical significance (p = 0.681) in either group.In conclusion, deficient kinesthesia in the ACLR limb was observed at three months post-surgery. Also, the positive effects of SR on somatosensory acuity in the ACL reconstructed group warrant further investigation into the use of this phenomenon to improve proprioception in ACLR and healthy groups.  相似文献   
60.
Partial anterior cruciate ligament (p-ACL) rupture is a common injury, but the impact of a p-ACL injury on in vivo joint kinematics has yet to be determined in an animal model. The in vivo kinematics of the ovine stifle joint were assessed during ‘normal’ gait, and at 20 and 40 weeks after p-ACL transection (Tx). Gross morphological scoring of the knee was conducted. p-ACL Tx creates significant progressive post-traumatic osteoarthritis (PTOA)-like damage by 40 weeks. Statistically significant increases for flexion angles at hoof-strike (HS) and mid-stance (MST) were seen at 20 weeks post p-ACL Tx and the HS and hoof-off (HO) points at 40 weeks post p-ACL-Tx, therefore increased flexion angles occurred during stance phase. Statistically significant increases in posterior tibial shift at the mid-flexion (MF) and mid-extension (ME) points were seen during the swing phase of the gait cycle at 40 weeks post p-ACL Tx. Correlation analysis showed a strong and significant correlation between kinematic changes (instabilities) and gross morphological score in the inferior-superior direction at 40 weeks post p-ACL Tx at MST, HO, and MF. Further, there was a significant correlation between change in gross morphological combined score (ΔGCS) and the change in location of the helical axis in the anterior direction (ΔsAP) after p-ACL Tx for all points analyzed through the gait cycle. This study quantified in vivo joint kinematics before and after p-ACL Tx knee injury during gait, and demonstrated that a p-ACL knee injury leads to both PTOA-like damage and kinematic changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号