首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1111篇
  免费   161篇
  国内免费   25篇
  2024年   3篇
  2023年   44篇
  2022年   28篇
  2021年   40篇
  2020年   69篇
  2019年   109篇
  2018年   68篇
  2017年   46篇
  2016年   54篇
  2015年   64篇
  2014年   92篇
  2013年   126篇
  2012年   62篇
  2011年   68篇
  2010年   52篇
  2009年   43篇
  2008年   43篇
  2007年   24篇
  2006年   28篇
  2005年   18篇
  2004年   22篇
  2003年   8篇
  2002年   23篇
  2001年   18篇
  2000年   12篇
  1999年   12篇
  1998年   12篇
  1997年   6篇
  1996年   10篇
  1995年   7篇
  1994年   14篇
  1993年   14篇
  1992年   9篇
  1991年   7篇
  1990年   3篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1976年   1篇
排序方式: 共有1297条查询结果,搜索用时 31 毫秒
41.
42.
In this study, we have investigated inhibitory capacity of ethyl acetate, total oligomer flavonoid (TOF), aqueous extracts and beta amyrin acetate, a triterpene isolated from ethyl acetate extract obtained from leaves of Daphne gnidium, on mouse melanoma (B16-F0 and B16-F10 cells) proliferation. Influence of these products on percentage cell distribution in cycle phases and melanogenesis was also studied. Cell viability was determined using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and flow cytometry was used to analyse effects of tested compounds on progression through the cell cycle. In addition, amounts of melanin and tyrosinase were measured spectrophotometrically at 475 nm. Ethyl acetate, TOF and aqueous extracts exhibited significant anti-proliferative activity after incubation with the two types of tumour skin cells B16-F0 and B16-F10. Furthermore, cell cycle analysis revealed that cells treated with ethyl acetate and TOF extracts were arrested predominantly in G2-M phase. Ethyl acetate extract has also the ability to enhance melanogenesis and tyrosinase activity of B16-F0 melanoma cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
43.
4-Hydroxynonenal (HNE) is the most studied end product of the lipoperoxidation process, by virtue of its relevant biological activity. The antiproliferative and proapoptotic effects of HNE have been widely demonstrated in a great variety of tumor cell types in vitro. Thus, it might represent a promising new molecule in anticancer therapy strategies. However, the extreme reactivity of this aldehyde, as well as its insolubility in water, a limiting factor for drug bioavailability, and its rapid degradation by specific enzymes represent major obstacles to its possible in vivo application. Various strategies can used to overcome these problems. One of the most attractive strategies is the use of nanovehicles, because loading drugs into nanosized structures enhances their stability and solubility, thus improving their bioavailability and their antitumoral effectiveness. Several natural or synthetic polymers have been used to synthesize nanosized structures and, among them, β-cyclodextrin (βCD) polymers are playing a very important role in drug formulation by virtue of the ability of βCD to form inclusion compounds with a wide range of solid and liquid molecules by molecular complexation. Moreover, several βCD derivatives have been designed to improve their physicochemical properties and inclusion capacities. Here we report that the inclusion complex of HNE with a derivative of βCD, the βCD–poly(4-acryloylmorpholine) conjugate (PACM-βCD), enhances the aldehyde stability. Moreover, the inclusion of HNE in PACM-βCD potentiates its antitumor effects in several tumor cell lines and in a more complex system, such as a human reconstructed skin carrying melanoma tumor cells.  相似文献   
44.
Aberrant promoter methylation and resultant silencing of TRAIL decoy receptors were reported in a variety of cancers, but to date little is known about the relevance of this epigenetic modification in melanoma. In this study, we examined the methylation and the expression status of TRAIL receptor genes in cutaneous and uveal melanoma cell lines and specimens and their interaction with DNA methyltransferases (DNMTs) DNMT1, DNMT3a, and DNMT3b. DR4 and DR5 methylation was not frequent in cutaneous melanoma but on the contrary it was very frequent in uveal melanoma. No correlation between methylation status of DR4 and DR5 and gene expression was found. DcR1 and DcR2 were hypermethylated with very high frequency in both cutaneous and uveal melanoma. The concordance between methylation and loss of gene expression ranged from 91% to 97%. Here we showed that DNMT1 was crucial for DcR2 hypermethylation and that DNMT1 and DNMT3a coregulate the methylation status of DcR1. Our work also revealed the critical relevance of DcR1 and DcR2 expression in cell growth and apoptosis either in cutaneous or uveal melanoma. In conclusion, the results presented here claim for a relevant impact of aberrant methylation of decoy receptors in melanoma and allow to understand how the silencing of DcR1 and DcR2 is related to melanomagenesis.  相似文献   
45.
We investigated the effects of compounds isolated from a methanolic extract of rose hips on melanin biosynthesis in B16 mouse melanoma cells and the possible mechanisms responsible for the inhibition of melanin biosynthesis. We found that, among the isolated compounds, quercetin was a particularly potent melanogenesis inhibitor. To reveal the mechanism for this inhibition, the effects on tyrosinase of B16 mouse melanoma were measured. Quercetin decreased the intracellular tyrosinase activity as well as the tyrosinase activity in a cell culture-free system. We also examined the cellular level of tyrosinase protein and found that quercetin dose-dependently inhibited tyrosinase protein expression. We consider from these results that the inhibition of melanogenesis by quercetin was due to the inhibition of both tyrosinase activity and of the protein expression.  相似文献   
46.
A peptidoglutaminase activity in microorganisms was detected using carbobenzoxy-l-glutamine or tertiary-amyloxycarbonyl-l-glutaminyl-l-proline as substrate. By screening, an organism which produces a relatively large amount of peptidoglutaminase was isolated from soil. The organism was identified as Bacillus circulans. The highest enzyme formation by the bacterium occurred during stationary growth phase in the basal medium containing lactose (0.5%) and polypepton (1%).  相似文献   
47.
A New method was devised for the estimation of the mycelial weight in rice-koji. In this method, the content of glucosamine in koji was used for the calculation of mycelial weight. The content of glucosamine in the mycelia of Aspergillus oryzae, koji, and rice was determined by a colorimetry after hydrolysis of these materials with sulfuric acid and purification of glucosamine fraction with a Dowex 50 W column. And the values of glucosamine were 114.5 mg/g in mycelia, 3.03 in the koji for amazake,* 1.34 in the koji for sake, and 0.0 in rice. The mycelial contents calculated from these data were 2.6% dry weight in amazake-koji and 1.2% in sake-koji.  相似文献   
48.
An activating BRAF (V600E) kinase mutation occurs in approximately half of melanomas. Recent clinical studies have demonstrated that vemurafenib (PLX4032) and dabrafenib, potent and selective inhibitors of mutant v-raf murine sarcoma viral oncogene homolog B1 (BRAF), exhibit remarkable activities in patients with V600 BRAF mutant melanomas. However, acquired drug resistance invariably develops after the initial treatment. Identification of acquired resistance mechanisms may inform the development of new therapies that elicit long-term responses of melanomas to BRAF inhibitors. Here we report that increased expression of AEBP1 (adipocyte enhancer-binding protein 1) confers acquired resistance to BRAF inhibition in melanoma. AEBP1 is shown to be highly upregulated in PLX4032-resistant melanoma cells because of the hyperactivation of the PI3K/Akt-cAMP response element-binding protein (CREB) signaling pathway. This upregulates AEBP1 expression and thus leads to the activation of NF-κB via accelerating IκBa degradation. In addition, inhibition of the PI3K/Akt-CREB-AEBP1-NF-κB pathway greatly reverses the PLX4032-resistant phenotype of melanoma cells. Furthermore, increased expression of AEBP1 is validated in post-treatment tumors in patients with acquired resistance to BRAF inhibitor. Therefore, these results reveal a novel PI3K/Akt-CREB-AEBP1-NF-κB pathway whose activation contributes to acquired resistance to BRAF inhibition, and suggest that this pathway, particularly AEBP1, may represent a novel therapeutic target for treating BRAF inhibitor-resistant melanoma.  相似文献   
49.
A solid scientific basis now supports the concept that cytotoxic T lymphocytes can specifically recognize and destroy melanoma cells. Over the last decades, clinicians and basic scientists have joined forces to advance our concepts of melanoma immunobiology. This has catalyzed the rational development of therapeutic approaches to enforce melanoma‐specific T cell responses. Preclinical studies in experimental mouse models paved the way for their successful translation into clinical benefit for patients with metastatic melanoma. A more thorough understanding of how melanomas develop resistance to T cell immunotherapy is necessary to extend this success. This requires a continued interdisciplinary effort of melanoma biologists and immunologists that closely connects clinical observations with in vitro investigations and appropriate in vivo mouse models: From bedside to bench to barn and back.  相似文献   
50.
Rho family GTPases regulate diverse processes in human melanoma ranging from tumor formation to metastasis and chemoresistance. In this study, a combination of in vitro and in vivo approaches was utilized to determine whether RHOJ, a CDC42 homologue that regulates melanoma chemoresistance, also controls melanoma migration. Depletion or overexpression of RHOJ altered cellular morphology, implicating a role for RHOJ in modulating actin cytoskeletal dynamics. RHOJ depletion inhibited melanoma cell migration and invasion in vitro and melanoma tumor growth and lymphatic spread in mice. Molecular studies revealed that RHOJ alters actin cytoskeletal dynamics by inducing the phosphorylation of LIMK, cofilin, and p41‐ARC (ARP2/3 complex subunit) in a PAK1‐dependent manner in vitro and in tumor xenografts. Taken together, these observations identify RHOJ as a melanoma linchpin determinant that regulates both actin cytoskeletal dynamics and chemoresistance by activating PAK1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号