首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   37篇
  国内免费   10篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   10篇
  2020年   11篇
  2019年   3篇
  2018年   17篇
  2017年   12篇
  2016年   15篇
  2015年   16篇
  2014年   23篇
  2013年   31篇
  2012年   22篇
  2011年   32篇
  2010年   21篇
  2009年   22篇
  2008年   32篇
  2007年   23篇
  2006年   17篇
  2005年   13篇
  2004年   18篇
  2003年   21篇
  2002年   14篇
  2001年   14篇
  2000年   16篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   11篇
  1987年   10篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   7篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有509条查询结果,搜索用时 19 毫秒
51.
Ab initio molecular dynamics simulations were employed to investigate, with explicit solvent water molecules, beta-D-glucose and beta-D-xylose degradation mechanisms in acidic media. The rate-limiting step in sugar degradation was found to be protonation of the hydroxyl groups on the sugar ring. We found that the structure of water molecules plays a significant role in the acidic sugar degradation pathways. Firstly, a water molecule competes with the hydroxyl group on the sugar ring for protons. Secondly, water forms hydrogen bonds with the hydroxyl groups on the sugar rings, thus weakening the C-C and C-O bonds (each to a different degree). Note that the reaction pathways could be altered due to the change of relative stability of the C-C and C-O bonds. Thirdly, water molecules that are hydrogen-bonded to sugar hydroxyls could easily extract a proton from the reaction intermediate, terminating the reaction. Indeed, the sugar degradation pathway is complex due to multiple protonation probabilities and the surrounding water structure. Our experimental data support multiple sugar acidic degradation pathways.  相似文献   
52.
Quantitative assessment of FGF regulation by cell surface heparan sulfates   总被引:1,自引:0,他引:1  
Heparin/heparan sulfate-like glycosaminoglycans (HSGAGs) modulate the activity of the fibroblast growth factor (FGF) family of proteins. Through interactions with both FGFs and FGF receptors (FGFRs), HSGAGs mediate FGF-FGFR binding and oligomerization leading to FGFR phosphorylation and initiation of intracellular signaling cascades. We describe a methodology to examine the impact of heparan sulfate fine structure and source on FGF-mediated signaling. Mitogenic assays using BaF3 cells transfected with specific FGFR isoforms allow for the quantification of FGF1 and FGF2 induced responses independent of conflicting influences. As such, this system enables a systematic investigation into the role of cell surface HSGAGs on FGF signaling. We demonstrate this approach using cell surface-derived HSGAGs and find that distinct HSGAGs elicit differential FGF response patterns through FGFR1c and FGFR3c. We conclude that this assay system can be used to probe the ability of distinct HSGAG species to regulate the activity of specific FGF-FGFR pairs.  相似文献   
53.
Ubiquitination directs the sorting of cell surface receptors and other integral membrane proteins into the multivesicular body (MVB) pathway. Cargo proteins are subsequently deubiquitinated before their enclosure within MVB vesicles. In Saccharomyces cerevisiae, Bro1 functions at a late step of MVB sorting and is required for cargo protein deubiquitination. We show that the loss of Bro1 function is suppressed by the overexpression of DOA4, which encodes the ubiquitin thiolesterase required for the removal of ubiquitin from MVB cargoes. Overexpression of DOA4 restores cargo protein deubiquitination and sorting via the MVB pathway and reverses the abnormal endosomal morphology typical of bro1 mutant cells, resulting in the restoration of multivesicular endosomes. We further demonstrate that Doa4 interacts with Bro1 on endosomal membranes and that the recruitment of Doa4 to endosomes requires Bro1. Thus, our results point to a key role for Bro1 in coordinating the timing and location of deubiquitination by Doa4 in the MVB pathway.  相似文献   
54.
Rap1 and Ras are closely related GTPases that share some effectors but have distinct functions. We studied the subcellular localization of Rap1 and its sites of activation in living cells. Both GFP-tagged Rap1 and endogenous Rap1 were localized to the plasma membrane (PM) and endosomes. The PM association of GFP-Rap1 was dependent on GTP binding, and GFP-Rap1 was rapidly up-regulated on this compartment in response to mitogens, a process blocked by inhibitors of endosome recycling. A novel fluorescent probe for GTP-bound Rap1 revealed that this GTPase was transiently activated only on the PM of both fibroblasts and T cells. Activation on the PM was blocked by inhibitors of endosome recycling. Moreover, inhibition of endosome recycling blocked the ability of Rap1 to promote integrin-mediated adhesion of T cells. Thus, unlike Ras, the membrane localizations of Rap1 are dynamically regulated, and the PM is the principle platform from which Rap1 signaling emanates. These observations may explain some of the biological differences between these GTPases.  相似文献   
55.
Acidic mammalian chitinase (AMCase), an enzyme implicated in the pathology of asthma, is capable of chitin cleavage at a low pH optimum. The corresponding gene (CHIA) can be found in genome databases of a variety of mammals, but the enzyme properties of only the human and mouse proteins were extensively studied. We wanted to compare enzymes of closely related species, such as humans and macaques. In our attempt to study macaque AMCase, we searched for CHIA-like genes in human and macaque genomes. We found that both genomes contain several additional CHIA-like sequences. In humans, CHIA-L1 (hCHIA-L1) is an apparent pseudogene and has the highest homology to CHIA. To determine which of the two genes is functional in monkeys, we assessed their tissue expression levels. In our experiments, CHIA-L1 expression was not detected in human stomach tissue, while CHIA was expressed at high levels. However, in the cynomolgus macaque stomach tissue, the expression pattern of these two genes was reversed: CHIA-L1 was expressed at high levels and CHIA was undetectable. We hypothesized that in macaques CHIA-L1 (mCHIA-L1), and not CHIA, is a gene encoding an acidic chitinase, and cloned it, using the sequence of human CHIA-L1 as a guide for the primer design. We named the new enzyme MACase (Macaca Acidic Chitinase) to emphasize its differences from AMCase. MACase shares a similar tissue expression pattern and pH optimum with human AMCase, but is 50 times more active in our enzymatic activity assay. DNA sequence of the mCHIA-L1 has higher percentage identity to the human pseudogene hCHIA-L1 (91.7%) than to hCHIA (84%). Our results suggest alternate evolutionary paths for human and monkey acidic chitinases.  相似文献   
56.
The mechanism underlying the interaction of the Escherichia coli signal recognition particle receptor FtsY with the cytoplasmic membrane has been studied in detail. Recently, we proposed that FtsY requires functional interaction with inner membrane lipids at a late stage of the signal recognition particle pathway. In addition, an essential lipid-binding α-helix was identified in FtsY of various origins. Theoretical considerations and in vitro studies have suggested that it interacts with acidic lipids, but this notion is not yet fully supported by in vivo experimental evidence. Here, we present an unbiased genetic clue, obtained by serendipity, supporting the involvement of acidic lipids. Utilizing a dominant negative mutant of FtsY (termed NG), which is defective in its functional interaction with lipids, we screened for E. coli genes that suppress the negative dominant phenotype. In addition to several unrelated phenotype-suppressor genes, we identified pgsA, which encodes the enzyme phosphatidylglycerophosphate synthase (PgsA). PgsA is an integral membrane protein that catalyzes the committed step to acidic phospholipid synthesis, and we show that its overexpression increases the contents of cardiolipin and phosphatidylglycerol. Remarkably, expression of PgsA also stabilizes NG and restores its biological function. Collectively, our results strongly support the notion that FtsY functionally interacts with acidic lipids.  相似文献   
57.
58.
Differences in mycotrophic growth and response to phosphorus (P) fertilization were studied in seedlings of two woody native species: Clusia minor L. and Clusia multiflora H.B.K. from a cloud montane forest of tropical America. Greenhouse investigation was undertaken to determine the relationships between mycorrhizal dependency of host species associated with P utilization and growth in two different soils contrasting in pH (acidic and neutral) and nutrient content. Four treatments were performed: sterilized soil; sterilized soil plus 375 mg/kg of triple superphosphate (TSP); sterilized soil inoculated with Scutellospora fulgida (20 g/pot); and sterilized soil plus S. fulgida and TSP, with 10 replications per treatment for the two species. Results showed that both Clusia species presented high growth response to increasing P availability, which indicates that the root morphology (magnolioid roots) of these species is not a limiting factor for the incorporation of P from soils. Plants inoculated with arbuscular mycorrhizal fungi (AMF) in acidic soil had significantly increased shoot and root biomass, leaf area and height, in comparison to the biomass of P-fertilized plants and nonmycorrhizal plants. In neutral soil, seedlings of C. minor and C. multiflora were negatively affected by inoculation with AMF. In contrast, a significant decrease in growth was observed when inoculated plants were compared with noninoculated plants on neutral soil. Results indicate that an increase in the availability of a limiting nutrient (P) can turn a balanced mutualistic relationship into a less balanced nonmutualistic one.  相似文献   
59.
We have investigated apolipoprotein E (apoE) recycling in Chinese hamster ovary (CHO) cells, a peripheral cell that does not produce lipoproteins or express apoE. Using a pulse-chase protocol in which cells were pulsed with 125I-apoE-VLDL and chased for different periods, approximately 30% of the apoE internalized during the pulse was resecreted within a 4 h chase in a relatively lipid-free state. The addition of lysosomotropic agents or brefeldin A had no effect on apoE recycling. Unlike previous results with hepatocytes and macrophages, neither apoA-I nor upregulation of ABCA1 stimulated apoE recycling. However, cyclodextrin, which extracts cholesterol from plasma membrane lipid rafts, increased recycling. Confocal studies revealed that apoE, internalized during a 1 h pulse, colocalizes with early endosomal antigen-1, Rab5, Rab11a, and lysobisphosphatidic acid but not with lysosomal-associated membrane protein-1. Colocalization of apoE and Rab11a persisted even after cells had been chased for 1 h, suggesting a pool of apoE within the endosomal recycling compartment (ERC). Our data suggest that apoE recycling in CHO cells is linked to cellular cholesterol removal via the ERC and phospholipid-containing acceptors in a pathway alternative to the ABCA1-apoA-I axis.  相似文献   
60.
Xu F  Sun JX  Liu CF  Sun RC 《Carbohydrate research》2006,341(2):253-261
Two-stage treatments of sugarcane bagasse with mild alkali and acidic 1,4-dioxane were performed. Pretreatment with 1M NaOH aqueous solution at 20, 25, 30, 35, and 40 degrees C for 18 h released 55.5%, 57.3%, 59.1%, 60.9%, and 62.1% of the original hemicelluloses, respectively. Post-treatment of the corresponding alkali-treated residue with 1,4-dioxane-2M HCl (9:1, v/v) at 87 degrees C for 2h, respectively, degraded 11.6%, 11.9%, 11.4%, 10.9%, and 10.6% of hemicelluloses (% dry starting material). It was found that the five alkali-soluble hemicellulosic preparations contained a much higher amounts of xylose (78.0-82.2%) and slightly higher uronic acids (4.8-5.8%), mainly 4-O-methyl-alpha-d-glucopyranosyluronic acid, but were lower in arabinose (9.3-11.7%) and glucose (2.2-4.1%) than those of the corresponding five acidic dioxane-degraded hemicellulosic fractions in which xylose (44.9-46.8%), arabinose (35.9-38.1%), and glucose (13.0-13.7%) were the major sugar constituents. The studies revealed that the five alkali-soluble hemicellulosic preparations were more linear and acidic, and had a large molecular weight (35,200-37,430 g mol(-1)) than those of the hemicellulosic fractions (12,080-13,320 g mol(-1)) degraded during the acidic dioxane post-treatment. This demonstrated that the post-treatment with acidic dioxane under the condition used resulted in substantial degradation of the hemicellulosic polymers. The 10 hemicellulosic samples were further characterized by FT-IR and 1H and 13C NMR spectroscopy, GPC and thermal analysis, and the results are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号