首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2467篇
  免费   20篇
  国内免费   11篇
  2498篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   11篇
  2015年   29篇
  2014年   161篇
  2013年   336篇
  2012年   387篇
  2011年   468篇
  2010年   357篇
  2009年   42篇
  2008年   48篇
  2007年   47篇
  2006年   37篇
  2005年   28篇
  2004年   27篇
  2003年   41篇
  2002年   35篇
  2001年   19篇
  2000年   22篇
  1999年   23篇
  1998年   22篇
  1997年   32篇
  1996年   19篇
  1995年   14篇
  1994年   18篇
  1993年   18篇
  1992年   17篇
  1991年   13篇
  1990年   6篇
  1989年   12篇
  1988年   4篇
  1987年   12篇
  1986年   7篇
  1985年   15篇
  1984年   17篇
  1983年   24篇
  1982年   18篇
  1981年   12篇
  1980年   7篇
  1979年   6篇
  1978年   9篇
  1977年   4篇
  1976年   4篇
  1974年   3篇
  1972年   4篇
排序方式: 共有2498条查询结果,搜索用时 0 毫秒
81.
The chromatographic separation of an unstable protein is often a challenge to the scientist working in the field of life sciences. Especially for the purification of sensitive enzymes, making use of conventional chromatographic techniques is difficult and frequently results in a complete loss of biological activity of the target protein. This report summarizes some general strategies that may help to keep unstable proteins in their native conformation during the rather harsh conditions of a purification procedure. In this context, a recently developed hollow fiber membrane module, suitable for performing on-line dialysis, is introduced and examples of its application to liquid column chromatography are given. Many innovative separation techniques, characterized by dramatic improvements in both performance and separation time, have recently been developed. Since the chromatographic separation of unstable proteins requires the use of modern state-of-the-art equipment and technology, emphasis is given to newly developed separation techniques such as expanded bed adsorption, perfusion chromatography, protein free flow electrophoresis and the use of tentacle gels. In addition, examples of recently published purifications of unstable proteins are discussed with respect to strategies ensuring the preservation of the native protein structure during chromatographic separation.  相似文献   
82.
In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives.  相似文献   
83.
84.
Collagen XVIII is characterized by three variant N termini, an interrupted collagenous domain, and a C-terminal antiangiogenic domain known as endostatin. We studied here the roles of this collagen type and its variant isoforms in the mouse kidney. Collagen XVIII appeared to be in a polarized orientation in the tubular basement membranes (BMs), the endostatin domain embedded in the BM, and the N terminus residing at the BM-fibrillar matrix interface. In the case of the glomerular BM (GBM), collagen XVIII was expressed in different isoforms depending on the side of the GBM. The orientation appeared polarized here, too, both the endothelial promoter 1-derived short variant of collagen XVIII and the epithelial promoter 2-derived longer variants having their C-terminal endostatin domains embedded in the BM and the N termini at the respective BM-cell interfaces. In addition to loosening of the proximal tubular BM structure, the Col18a1(-/-) mice showed effacement of the glomerular podocyte foot processes, and microindentation studies showed changes in the mechanical properties of the glomeruli, the Col18a1(-/-) glomeruli being ~30% softer than the wild-type. Analysis of promoter-specific knockouts (Col18a1(P1/P1) and Col18a1(P2/P2)) indicated that tubular BM loosening is due to a lack of the shortest isoform, whereas the glomerular podocyte effacement was due to a lack of the longer isoforms. We suggest that lack of collagen XVIII may also have disparate effects on kidney function in man, but considering the mild physiological findings in the mutant mice, such effects may manifest themselves only late in life or require other compounding molecular changes.  相似文献   
85.
The Rotational Isomeric States model is applied to calculate dipole moments of polypeptides of the twenty natural α-amino acids in the random coil state. Dipole moments of each repeat unit (μi), are evaluated using a quantum mechanics procedure. Dipole moment ratios (Dx = 〈μ2xμi2, x = number of repeat units) of homopolypeptides are calculated and extrapolated to x →?. With a few exceptions, D? = 0.36 ± 0.1. Ten actual proteins and three enzymes are also studied; their dipole ratios (Dx′ =〈μ〉/x) range from 7.34 to 10.57 in 10?59 C2 m2 (6.6–9.5 D2). Diffferences in the values of Dx′ are due mainly to the different contributions, μi, of the amino acid residues contained in each polymer, whereas the sequence of amino acids has a very minor effect.  相似文献   
86.
The β-barrel assembly machinery (BAM) complex of Escherichia coli is a multiprotein machine that catalyzes the essential process of assembling outer membrane proteins. The BAM complex consists of five proteins: one membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Here, we report the first crystal structure of a Bam lipoprotein complex: the essential lipoprotein BamD in complex with the N-terminal half of BamC (BamC(UN) (Asp(28)-Ala(217)), a 73-residue-long unstructured region followed by the N-terminal domain). The BamCD complex is stabilized predominantly by various hydrogen bonds and salt bridges formed between BamD and the N-terminal unstructured region of BamC. Sequence and molecular surface analyses revealed that many of the conserved residues in both proteins are found at the BamC-BamD interface. A series of truncation mutagenesis and analytical gel filtration chromatography experiments confirmed that the unstructured region of BamC is essential for stabilizing the BamCD complex structure. The unstructured N terminus of BamC interacts with the proposed substrate-binding pocket of BamD, suggesting that this region of BamC may play a regulatory role in outer membrane protein biogenesis.  相似文献   
87.
Myosin-Va (Myo5a) is a motor protein associated with synaptic vesicles (SVs) but the mechanism by which it interacts has not yet been identified. A potential class of binding partners are Rab GTPases and Rab3A is known to associate with SVs and is involved in SV trafficking. We performed experiments to determine whether Rab3A interacts with Myo5a and whether it is required for transport of neuronal vesicles. In vitro motility assays performed with axoplasm from the squid giant axon showed a requirement for a Rab GTPase in Myo5a-dependent vesicle transport. Furthermore, mouse recombinant Myo5a tail revealed that it associated with Rab3A in rat brain synaptosomal preparations in vitro and the association was confirmed by immunofluorescence imaging of primary neurons isolated from the frontal cortex of mouse brains. Synaptosomal Rab3A was retained on recombinant GST-tagged Myo5a tail affinity columns in a GTP-dependent manner. Finally, the direct interaction of Myo5a and Rab3A was determined by sedimentation velocity analytical ultracentrifugation using recombinant mouse Myo5a tail and human Rab3A. When both proteins were incubated in the presence of 1 mm GTPγS, Myo5a tail and Rab3A formed a complex and a direct interaction was observed. Further analysis revealed that GTP-bound Rab3A interacts with both the monomeric and dimeric species of the Myo5a tail. However, the interaction between Myo5a tail and nucleotide-free Rab3A did not occur. Thus, our results show that Myo5a and Rab3A are direct binding partners and interact on SVs and that the Myo5a/Rab3A complex is involved in transport of neuronal vesicles.  相似文献   
88.
Leukotriene (LT) C(4) and its metabolites, LTD(4) and LTE(4), are involved in the pathobiology of bronchial asthma. LTC(4) synthase is the nuclear membrane-embedded enzyme responsible for LTC(4) biosynthesis, catalyzing the conjugation of two substrates that have considerably different water solubility; that amphipathic LTA(4) as a derivative of arachidonic acid and a water-soluble glutathione (GSH). A previous crystal structure revealed important details of GSH binding and implied a GSH activating function for Arg-104. In addition, Arg-31 was also proposed to participate in the catalysis based on the putative LTA(4) binding model. In this study enzymatic assay with mutant enzymes demonstrates that Arg-104 is required for the binding and activation of GSH and that Arg-31 is needed for catalysis probably by activating the epoxide group of LTA(4).  相似文献   
89.

Background

To understand the mechanisms related to the ‘dynamical ordering’ of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells.

Scope of review

In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges.

Major conclusions

Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1 MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques.

General significance

For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号