首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2467篇
  免费   20篇
  国内免费   11篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   11篇
  2015年   29篇
  2014年   161篇
  2013年   336篇
  2012年   387篇
  2011年   468篇
  2010年   357篇
  2009年   42篇
  2008年   48篇
  2007年   47篇
  2006年   37篇
  2005年   28篇
  2004年   27篇
  2003年   41篇
  2002年   35篇
  2001年   19篇
  2000年   22篇
  1999年   23篇
  1998年   22篇
  1997年   32篇
  1996年   19篇
  1995年   14篇
  1994年   18篇
  1993年   18篇
  1992年   17篇
  1991年   13篇
  1990年   6篇
  1989年   12篇
  1988年   4篇
  1987年   12篇
  1986年   7篇
  1985年   15篇
  1984年   17篇
  1983年   24篇
  1982年   18篇
  1981年   12篇
  1980年   7篇
  1979年   6篇
  1978年   9篇
  1977年   4篇
  1976年   4篇
  1974年   3篇
  1972年   4篇
排序方式: 共有2498条查询结果,搜索用时 218 毫秒
1.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   
2.
Past studies of bone extracellular matrix phosphoproteins such as osteopontin and bone sialoprotein have yielded important biological information regarding their role in calcification and the regulation of cellular activity. Most of these studies have been limited to proteins extracted from mammalian and avian vertebrates and nonvertebrates. The present work describes the isolation and purification of two major highly glycosylated and phosphorylated extracellular matrix proteins of 70 and 22 kDa from herring fish bones. The 70-kDa phosphoprotein has some characteristics of osteopontin with respect to amino acid composition and susceptibility to thrombin cleavage. Unlike osteopontin, however, it was found to contain high levels of sialic acid similar to bone sialoprotein. The 22-kDa protein has very different properties such as very high content of phosphoserine (∼270 Ser(P) residues/1000 amino acid residues), Ala, and Asx residues. The N-terminal amino acid sequence analysis of both the 70-kDa (NPIMA(M)ETTS(M)DSKVNPLL) and the 22-kDa (NQDMAMEASSDPEAA) fish phosphoproteins indicate that these unique amino acid sequences are unlike any published in protein databases. An enzyme-linked immunosorbent assay revealed that the 70-kDa phosphoprotein was present principally in bone and in calcified scales, whereas the 22-kDa phosphoprotein was detected only in bone. Immunohistological analysis revealed diffusely positive immunostaining for both the 70- and 22-kDa phosphoproteins throughout the matrix of the bone. Overall, this work adds additional support to the concept that the mechanism of biological calcification has common evolutionary and fundamental bases throughout vertebrate species.  相似文献   
3.
This research tested the utility of two classes of skin secretion compounds to the phylogeny of the Bufo crucifer group. Skin secretions from specimens of nine populations of B. crucifer group were obtained and submitted to qualitative analysis. We observed a clear difference in the composition of the skin secretion molecules obtained from the species of Bufo studied. Fifty-nine molecules, 16 indolealkylamines and 43 proteins, were used as characters, and 39 of these were parsimonious informative. The tree topology of the skin secretion combined data showed areas of congruence and conflict when compared to an mtDNA phylogeny of the B. crucifer group. We used the Templeton test to evaluate the heterogeneity between the skin secretion and mtDNA data. Although not recommended, we performed a combined analysis with the two partitions. The skin secretion characters from the species of Bufo studied have phylogenetic signal. These data are indicative, at least as a preliminary study, of the phylogenetic relationships among the B. crucifer group taxa.  相似文献   
4.
The membrane localization of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) in polarized cells is determined by alternative splicing; the PMCA2w/b splice variant shows apical localization, whereas the PMCA2z/b and PMCA2x/b variants are mostly basolateral. We previously reported that PMCA2b interacts with the PDZ protein Na+/H+ exchanger regulatory factor 2 (NHERF2), but the role of this interaction for the specific membrane localization of PMCA2 is not known. Here we show that co-expression of NHERF2 greatly enhanced the apical localization of GFP-tagged PMCA2w/b in polarized Madin-Darby canine kidney cells. GFP-PMCA2z/b was also redirected to the apical membrane by NHERF2, whereas GFP-PMCA2x/b remained exclusively basolateral. In the presence of NHERF2, GFP-PMCA2w/b co-localized with the actin-binding protein ezrin even after disruption of the actin cytoskeleton by cytochalasin D or latrunculin B. Surface biotinylation and fluorescence recovery after photobleaching experiments demonstrated that NHERF2-mediated anchorage to the actin cytoskeleton reduced internalization and lateral mobility of the pump. Our results show that the specific interaction with NHERF2 enhances the apical concentration of PMCA2w/b by anchoring the pump to the apical membrane cytoskeleton. The data also suggest that the x/b splice form of PMCA2 contains a dominant lateral targeting signal, whereas the targeting and localization of the z/b form are more flexible and not fully determined by intrinsic sequence features.  相似文献   
5.
Fermentation systems are used to provide an optimal growth environment for many different types of cell cultures. The ability afforded by fermentors to carefully control temperature, pH, and dissolved oxygen concentrations in particular makes them essential to efficient large scale growth and expression of fermentation products. This video will briefly describe the advantages of the fermentor over the shake flask. It will also identify key components of a typical benchtop fermentation system and give basic instruction on setup of the vessel and calibration of its probes. The viewer will be familiarized with the sterilization process and shown how to inoculate the growth medium in the vessel with culture. Basic concepts of operation, sampling, and harvesting will also be demonstrated. Simple data analysis and system cleanup will also be discussed.  相似文献   
6.
The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L535X3G539X2A542X3V546X2L549 rather than through the alternative glycine zipper motif A536X3G540X3G544 (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr588 and/or Tyr594) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.  相似文献   
7.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.  相似文献   
8.
Acidic inorganic phosphate (Pi) pool (pH around 6) was detected besides the cytoplasmic pool in intact cells of Chlorella vulgaris 11h by 31P-in vivo nuclear magnetic resonance (NMR) spectroscopy. It was characterized as acidic compartments (vacuoles) in combination with the cytochemical technique; staining the cells with neutral red and chloroquine which are known as basic reagents specifically accumulated in acidic compartments. Under various conditions, the results obtained with the cytochemical methods were well correlated with those obtained from in vivo NMR spectra; the vacuoles were well developed in the cells at the stationary growth phase where the acidic Pi signal was detected. In contrast, cells at the logarithmic phase in which no acidic Pi signal was detected contained only smaller vesicles that accumulated these basic reagents. No acidic compartment was detected by both cytochemical technique and 31P-NMR spectroscopy when the cells were treated with NH4OH. The vacuolar pH was lowered by the anaerobic treatment of the cells in the presence of glucose, while it was not affected by the external pH during the preincubation ranging from 3 to 10. Possible vacuolar functions in unicellular algae especially with respect to intracellular pH regulation are discussed.Non-standard abbreviations EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MDP methylene diphosphonic acid - NMR nuelear magnetic resonance - PCA perchloric acid - PCV packed cell volume - Pi inorganic phosphate - Pic sytoplasmic inorganic phosphate - Piv vacuolar inorganic phosphate - ppm parts per million - SP sugar phosphates - TCA trichloroacetic acid  相似文献   
9.
10.
Summary A single scan method for the suppression of signals arising from zero-quantum coherences (ZQC) is analysed with respect to its application to NMR experiments on proteins. The ZQC are dephased during a spinlock period due to the natural RF inhomogeneity of a commercial probe. A quantitative analysis of a ZQC-compensated NOESY experiment is given. Although the build-up curve for the cross peaks in ZQC-compensated NOESY experiments differ from those in uncompensated experiments, interproton distances in medium-sized proteins can be evaluated with high accuracy. The proposed method is compared with other techniques for ZQC suppression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号