首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   855篇
  免费   23篇
  国内免费   18篇
  2023年   5篇
  2022年   8篇
  2021年   14篇
  2020年   15篇
  2019年   16篇
  2018年   20篇
  2017年   13篇
  2016年   8篇
  2015年   18篇
  2014年   55篇
  2013年   49篇
  2012年   23篇
  2011年   31篇
  2010年   23篇
  2009年   33篇
  2008年   37篇
  2007年   34篇
  2006年   29篇
  2005年   46篇
  2004年   29篇
  2003年   25篇
  2002年   15篇
  2001年   7篇
  2000年   16篇
  1999年   19篇
  1998年   21篇
  1997年   12篇
  1996年   17篇
  1995年   21篇
  1994年   16篇
  1993年   28篇
  1992年   20篇
  1991年   13篇
  1990年   10篇
  1989年   22篇
  1988年   16篇
  1987年   13篇
  1986年   9篇
  1985年   20篇
  1984年   21篇
  1983年   12篇
  1982年   16篇
  1981年   9篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
排序方式: 共有896条查询结果,搜索用时 109 毫秒
91.
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.  相似文献   
92.
The co-crystal structure of the human acetyl-coenzyme A 2 (ACC2) carboxyl transferase domain and the reported compound CP-640186 (1b) suggested that two carbonyl groups are essential for potent ACC2 inhibition. By focusing on enhancing the interactions between the two carbonyl groups and the amino acid residues Gly(2162) and Glu(2230), we used ligand- and structure-based drug design to discover spirolactones bearing a 2-ureidobenzothiophene moiety.  相似文献   
93.
The antibiotic virginiamycin is a combination of two molecules, virginiamycin M1 (VM1) and virginiamycin S1 (VS1) or analogues, which function synergistically by binding to bacterial ribosomes and inhibiting bacterial protein synthesis. Both VM1 and VS1 dissolve poorly in water and are soluble in more hydrophobic solvents. We have recently reported that the 3D conformation of VM1 in CDCl3 solution (Aust. J. Chem. 57:415, 2004; Org. Biomol. Chem. 2:2919, 2004) differs markedly from the conformation bound to a VM1 binding enzyme (Sugantino and Roderick in Biochemistry 41:2209, 2002) and to 50S ribosomes (Hansen et al. in J. Mol. Biol. 330:1061, 2003) as found by X-ray crystallographic studies. We now report the results of further NMR studies and subsequent molecular modeling of VM1 dissolved in CD3CN/H2O and compare the structure with that in CD3OD and CDCl3. The conformations of VM1 in CD3CN/H2O, CD3OD and CDCl3 differ substantially from one another and from the bound form, with the aqueous form most like the bound structure. We propose that the flexibility of the VM1 molecule in response to environmental conditions contributes to its effectiveness as an antibiotic.  相似文献   
94.
We have previously cloned a cDNA, designated SAT1, corresponding to a gene coding for a serine acetyltransferase (SAT) from onion (Allium cepa L.). The SAT1 locus was mapped to chromosome 7 of onion using a single-stranded conformation polymorphism (SSCP) in the 3' UTR of the gene. Northern analysis has demonstrated that expression of the SAT1 gene is induced in leaf tissue in response to low S-supply. Phylogenetic analysis has placed SAT1 in a strongly supported group (100% bootstrap) that comprises sequences that have been characterised biochemically, including Allium tuberosum, Spinacea oleracea, Glycine max, Citrullus vulgaris, and SAT5 (AT5g56760) of Arabidopsis thaliana. This group can be divided further with the SAT1 of A. cepa sequence grouping strongly with the A. tuberosum sequence. Translation of SAT1 from onion generates a protein of 289 amino acids with a calculated molecular mass of 30,573 Da and pI of 6.52. The conserved G277 and H282 residues that have been identified as critical for L-cysteine inhibition are observed at G272 and H277. SAT1 has been cloned into the pGEX plasmid, expressed in E. coli and SAT activity of the recombinant enzyme has been measured as acetyl-CoA hydrolysis detected at 232 nm. A Km of 0.72 mM was determined for l-serine as substrate, a Km of 92 microM was calculated with acetyl-CoA as substrate, and an inhibition curve for L-cysteine generated an IC50 value of 3.1 microM. Antibodies raised against the recombinant SAT1 protein recognised a protein of ca. 33 kDa in whole leaf onion extracts. These properties of the SAT1 enzyme from onion are compared with other SAT enzymes characterised from closely related species.  相似文献   
95.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   
96.
Estrogen-responsive genes in human breast cancer cells often have an estrogen response element (ERE) positioned next to an Sp1 binding site. In chromatin immunoprecipitation (ChIP) assays, we investigated the binding of estrogen receptor alpha (ER), Sp1, and Sp3 to the episomal and native estrogen-responsive trefoil factor 1 (TFF1; formerly pS2) promoter in MCF-7 breast cancer cells. Mutation of the Sp site upstream of the ERE reduced estrogen responsiveness and prevented binding of Sp1 and Sp3, but not ER to the episomal promoter. In the absence of estradiol (E2), Sp1, Sp3, histone deacetylase 1 (HDAC), and HDAC2, and low levels of acetylated H3 and H4 are associated with the native promoter, with the histones being engaged in dynamic reversible acetylation. Following E2 addition, levels of ER and acetylated H3 and H4 bound to the native promoter increases. There is clearance of Sp1, but not of Sp3, from the promoter while HDAC1 and HDAC2 remain bound. These data are consistent with a model in which Sp1 or Sp3 aid in recruitment of HDACs and histone acetyltransferases (HATs) to mediate dynamic acetylation of histones associated with the TFF1 promoter, which is in a state of readiness to respond to events occurring following the addition of estrogen.  相似文献   
97.
98.
L-2,4-Diaminobutyrate (DAB) acetyltransferase (DABAcT) catalyzes one of the key reactions of biosynthesis of the bacterial osmoprotectant ectoine--acetylation of L-2,4-DAB yielding Ngamma-acetyl-2,4-DAB. Gene ectA encoding DABAcT was cloned from DNA of the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z and expressed in Escherichia coli with an additional six His residues at the C-terminus. Homogeneous enzyme preparation with specific activity 200 U/mg was obtained by affinity metal-chelating chromatography. DABAcT was found to be a homodimer with molecular mass 40 kD. The enzyme is most active at pH 9.5 and 20 degrees C, and its activity increased threefold in the presence of 0.1-0.2 M NaCl or 0.2 M KCl. The Km values of recombinant DABAcT measured at the optimal pH and temperature in the presence of 0.2 M KCl were 460 and 36.6 microM for L-2,4-DAB and acetyl-CoA, respectively. The enzyme is specific for L-2,4-DAB and acetyl-CoA and is also active against propionyl-CoA (20%). Zn2+ and Cd2+ at 1 mM concentration completely inhibit the recombinant enzyme; 10 mM ATP inhibits 26% of the enzyme activity, whereas EDTA, o-phenanthroline, ADP, NAD(P), and NAD(P)H do not significantly effect the enzyme activity. The possible participation of DABAcT in regulation of ectoine biosynthesis in M. alcaliphilum 20Z is discussed.  相似文献   
99.
100.
The kinetic mechanism of serine acetyltransferase from Haemophilus influenzae was studied in both reaction directions. The enzyme catalyzes the conversion of acetyl CoA and L-serine to O-acetyl-L-serine (OAS) and coenzyme A (CoASH). In the direction of L-serine acetylation, an equilibrium ordered mechanism is assigned at pH 6.5. The initial velocity pattern in the absence of added inhibitors is best described by a series of lines converging on the ordinate when L-serine is varied at different fixed levels of acetyl CoA. The initial velocity pattern at pH 7.5 is also intersecting, but the lines are nearly parallel. Product inhibition by OAS is noncompetitive against acetyl CoA, while it is uncompetitive against L-serine. Product inhibition by L-serine in the reverse reaction direction is noncompetitive with respect to both OAS and CoASH. Glycine and S-methyl-L-cysteine (SMC) were used as dead-end analogs of L-serine and OAS, respectively. Glycine is competitive versus L-serine and uncompetitive versus acetyl CoA, while SMC is competitive against OAS and uncompetitive against CoASH. Desulfo-CoA was used as a dead-end analog of both acetyl CoA and CoASH, and is competitive versus both substrates in the direction of L-serine acetylation; while it is competitive against CoASH and noncompetitive against OAS in the direction of CoASH acetylation. All of the above kinetic parameters are consistent with those predicted for an ordered mechanism at pH 6.5 with the exception of the uncompetitive inhibition by OAS vs. serine. The latter inhibition pattern suggests combination of OAS with the central E:acetyl CoA:serine complex. Cysteine is known to regulate its own biosynthesis at the level of SAT. As a dead-end inhibitor, L-cysteine is competitive against both substrates in both reaction directions. These results are discussed in terms of the mechanism of regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号