首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   23篇
  国内免费   18篇
  2023年   5篇
  2022年   12篇
  2021年   14篇
  2020年   15篇
  2019年   16篇
  2018年   20篇
  2017年   13篇
  2016年   8篇
  2015年   18篇
  2014年   55篇
  2013年   49篇
  2012年   23篇
  2011年   31篇
  2010年   23篇
  2009年   33篇
  2008年   37篇
  2007年   34篇
  2006年   29篇
  2005年   46篇
  2004年   29篇
  2003年   25篇
  2002年   15篇
  2001年   7篇
  2000年   16篇
  1999年   19篇
  1998年   21篇
  1997年   12篇
  1996年   17篇
  1995年   21篇
  1994年   16篇
  1993年   28篇
  1992年   20篇
  1991年   13篇
  1990年   10篇
  1989年   22篇
  1988年   16篇
  1987年   13篇
  1986年   9篇
  1985年   20篇
  1984年   21篇
  1983年   12篇
  1982年   16篇
  1981年   9篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
排序方式: 共有900条查询结果,搜索用时 15 毫秒
121.
122.
Seebahn A  Rose M  Enz R 《FEBS letters》2008,582(16):2453-2457
In the central nervous system, synaptic signal transduction depends on the regulation of neurotransmitter receptors by interacting proteins. Here, we searched for proteins interacting with two metabotropic glutamate receptor type 8 isoforms (mGlu8a and mGlu8b) and identified RanBPM. RanBPM is expressed in several brain regions, including the retina. There, RanBPM is restricted to the inner plexiform layer where it co-localizes with the mGlu8b isoform and processes of cholinergic amacrine cells expressing mGlu2 receptors. RanBPM interacts with mGlu2 and other group II and group III receptors, except mGlu6. Our data suggest that RanBPM might be associated with mGlu receptors at synaptic sites.  相似文献   
123.
Despite its toxicity for the majority of living matter on our planet, numerous microorganisms, both aerobic and anaerobic, can use carbon monoxide (CO) as a source of carbon and/or energy for growth. The capacity to employ carboxidotrophic energy metabolism anaerobically is found in phylogenetically diverse members of the Bacteria and the Archaea. The oxidation of CO is coupled to numerous respiratory processes, such as desulfurication, hydrogenogenesis, acetogenesis, and methanogenesis. Although as diverse as the organisms capable of it, any CO-dependent energy metabolism known depends on the presence of carbon monoxide dehydrogenase. This review summarizes recent insights into the CO-dependent physiology of anaerobic microorganisms with a focus on methanogenic archaea. Carboxidotrophic growth of Methanosarcina acetivorans, thought to strictly rely on the process of methanogenesis, also involves formation of methylated thiols, formate, and even acetogenesis, and, thus, exemplifies how the beneficial redox properties of CO can be exploited in unexpected ways by anaerobic microorganisms.  相似文献   
124.
We report the crystal structure of a binary complex of human peroxisomal carnitine acetyltransferase and the substrate l-carnitine, refined to a resolution of 1.8 Angstrom with an R(factor) value of 18.9% (R(free)=22.3%). L-carnitine binds to a preformed pocket in the active site tunnel of carnitine acetyltransferase aligned with His(322). The quaternary nitrogen of carnitine forms a pi-cation interaction with Phe(545), while Arg(497) forms an electrostatic interaction with the negatively charged carboxylate group. An extensive hydrogen bond network also occurs between the carboxylate group and Tyr(431), Thr(444), and a bound water molecule. Site-directed mutagenesis and kinetic characterization reveals that Tyr(431), Thr(444), Arg(497), and Phe(545) are essential for high affinity binding of L-carnitine.  相似文献   
125.
126.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is implicated as a key factor in controlling whole body homeostasis, including fatty acid oxidation and glucose uptake. We report that a synthetic structural isomer of dihydrocapsiate, isodihydrocapsiate (8-methylnonanoic acid 3-hydroxy-4-methoxy benzyl ester) improves type 2 diabetes by activating AMPK through the LKB1 pathway. In L6 myotube cells, phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and glucose uptake were significantly increased, whereas these effects were attenuated by an AMPK inhibitor, compound C. In addition, increased phosphorylation of AMPK and ACC by isodihydrocapsiate was significantly reduced by radicicol, an LKB1 destabilizer, suggesting that increased glucose uptake in L6 cells with isodihydrocapsiate treatment is predominantly accomplished by a LKB1-mediated AMPK activation pathway. Oral administration of isodihydrocapsiate to diabetic (db/db) mice reduced blood glucose levels by 40% after a 4-week treatment period. Our results support the development of isodihydrocapsiate as a potential therapeutic agent to target AMPK in type 2 diabetes.  相似文献   
127.
Saccharomyces cerevisiae, Baker's yeast, is the industrial workhorse for producing ethanol and the subject of substantial metabolic engineering research in both industry and academia. S. cerevisiae has been used to demonstrate production of a wide range of chemical products from glucose. However, in many cases, the demonstrations report titers and yields that fall below thresholds for industrial feasibility. Ethanol synthesis is a central part of S. cerevisiae metabolism, and redirecting flux to other products remains a barrier to industrialize strains for producing other molecules. Removing ethanol producing pathways leads to poor fitness, such as impaired growth on glucose. Here, we review metabolic engineering efforts aimed at restoring growth in non-ethanol producing strains with emphasis on relieving glucose repression associated with the Crabtree effect and rewiring metabolism to provide access to critical cellular building blocks. Substantial progress has been made in the past decade, but many opportunities for improvement remain.  相似文献   
128.
129.
Abstract: We report the distribution of choline acetyltransferase (ChAT) activity in the laminae of the rat olfactory tubercle. Within its posterior medial portion, the tubercle contains three parallel histological laminae that can be separated by cutting tangential sections from frozen tissue. ChAT was measured in homogenates of consecutive sections (16 μm) cut parallel to these laminae. The distribution of ChAT activity, as a function of tubercle depth, showed a broad peak centered at 500 μm from the ventral surface of the brain. Enzyme activity measured at this depth (85 pmol acetylcholine formed/μg protein/h) was 2 1/2 times greater than that measured in the outermost, plexiform, layer. Stereotaxic injections of kainic acid (1 μg in 1 μ1) made directly into the tubercle were used to eliminate intrinsic neurons. Three days after injection, histological examination revealed the almost total absence of neuronal cell bodies and the proliferation of glial cells. The greatest decreases in ChAT activity (50%) were seen at depths of 300–600 μm whereas no loss of activity occurred in the plexiform layer.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号