首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   23篇
  国内免费   18篇
  2023年   5篇
  2022年   11篇
  2021年   14篇
  2020年   15篇
  2019年   16篇
  2018年   20篇
  2017年   13篇
  2016年   8篇
  2015年   18篇
  2014年   55篇
  2013年   49篇
  2012年   23篇
  2011年   31篇
  2010年   23篇
  2009年   33篇
  2008年   37篇
  2007年   34篇
  2006年   29篇
  2005年   46篇
  2004年   29篇
  2003年   25篇
  2002年   15篇
  2001年   7篇
  2000年   16篇
  1999年   19篇
  1998年   21篇
  1997年   12篇
  1996年   17篇
  1995年   21篇
  1994年   16篇
  1993年   28篇
  1992年   20篇
  1991年   13篇
  1990年   10篇
  1989年   22篇
  1988年   16篇
  1987年   13篇
  1986年   9篇
  1985年   20篇
  1984年   21篇
  1983年   12篇
  1982年   16篇
  1981年   9篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
排序方式: 共有899条查询结果,搜索用时 15 毫秒
101.
Cysteine synthase from Escherichia coli is a bienzyme complex comprised of serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase A. The site of interaction of a SAT molecule was investigated by gel chromatography and surface plasmon technique using various mutant-type SATs, to better understand the mechanism involved in complex formation. The C-terminus of SAT, Ile 273, along with Glu 268 and Asp 271, was found to be essential for complex formation. The effects of O-acetyl-L-serine and sulfide on the affinity for the complex formation were also studied using a surface plasmon technique.  相似文献   
102.
本文用免疫组化双标法观察了神经生长因子受体(NGF-R)及胆碱乙酰转移酶(ChAT)免疫反应阳性神经元在成鼠基底前脑内的分布,结果发现嗅结节、隔内侧核、斜角带核、腹侧苍白球及基底大细胞核均有NGF-R及ChAT免疫反应阳性神经元.免疫组化双标染色发现,大部分免疫反应阳性神经元的NGF-R与ChAT共存,部分神经元呈单纯NGF-R或ChAT阳性,但这种NGF-R和ChAT的共存情况在不同区域不完全相同.在隔内侧核和斜角带核,大多数的NGF-R阳性神经元和ChAT阳性神经元共存,但在腹侧仓白球和基底大细胞核,两者共存的神经元较前两区为少.此外ChAT阳性神经元在尾壳核中分布较均匀,而NGF-R阳性神经元较少见.研究结果表明,大多数胆碱能神经元有NGF-R,提示NGF对胆碱能神经元的保护和激活作用,部分可能是通过直接与NGF受体的结合而发生作用.  相似文献   
103.
Genetically modified plants, in the following referred to as genetically modified organisms or GMOs, have been commercially grown for almost two decades. In 2010 approximately 10% of the total global crop acreage was planted with GMOs (James, 2011). More than 30 countries have been growing commercial GMOs, and many more have performed field trials. Although the majority of commercial GMOs both in terms of acreage and specific events belong to the four species: soybean, maize, cotton and rapeseed, there are another 20 + species where GMOs are commercialized or in the pipeline for commercialization. The number of GMOs cultivated in field trials or for commercial production has constantly increased during this time period. So have the number of species, the number of countries involved, the diversity of novel (added) genetic elements and the global trade. All of these factors contribute to the increasing complexity of detecting and correctly identifying GMO derived material. Many jurisdictions, including the European Union (EU), legally distinguish between authorized (and therefore legal) and un-authorized (and therefore illegal) GMOs. Information about the developments, field trials, authorizations, cultivation, trade and observations made in the official GMO control laboratories in different countries around the world is often limited, despite several attempts such as the OECD BioTrack for voluntary dissemination of data. This lack of information inevitably makes it challenging to detect and identify GMOs, especially the un-authorized GMOs. The present paper reviews the state of the art technologies and approaches in light of coverage, practicability, sensitivity and limitations. Emphasis is put on exemplifying practical detection of un-authorized GMOs. Although this paper has a European (EU) bias when examples are given, the contents have global relevance.  相似文献   
104.
105.
Liu Y  Zhou D  Zhang F  Tu Y  Xia Y  Wang H  Zhou B  Zhang Y  Wu J  Gao X  He Z  Zhai Q 《Journal of lipid research》2012,53(3):358-367
Patt1 is a newly identified protein acetyltransferase that is highly expressed in liver. However, the role of Patt1 in liver is still unclear. We generated Patt1 liver-specific knockout (LKO) mice and mainly measured the effect of hepatic Patt1 deficiency on lipid metabolism. Hepatic Patt1 deficiency in male mice markedly decreases fat mass and dramatically alleviates age-associated accumulation of lipid droplets in liver. Moreover, hepatic Patt1 abrogation in male mice significantly reduces the liver triglyceride and free fatty acid levels, but it has no effect on liver cholesterol level, liver weight, and liver function. Consistently, primary cultured Patt1-deficient hepatocytes are resistant to palmitic acid-induced lipid accumulation, but hepatic Patt1 deficiency fails to protect male mice from high-fat diet-induced hepatic steatosis. Further studies show that hepatic Patt1 deficiency decreases fatty acid uptake, reduces lipid synthesis, and enhances fatty acid oxidation, which may contribute to the attenuated hepatic steatosis in Patt1 LKO mice. These results demonstrate that Patt1 plays an important role in hepatic lipid metabolism and have implications toward resolving age-associated hepatic steatosis.  相似文献   
106.
Axonal transport of enzymatically active botulinum toxin A (BTX-A) from periphery to the CNS has been described in facial and trigeminal nerve, leading to cleavage of synaptosomal-associated protein 25 (SNAP-25) in central nuclei. Aim of present study was to examine the existence of axonal transport of peripherally applied BTX-A to spinal cord via sciatic nerve. We employed BTX-A-cleaved SNAP-25 immunohistochemistry of lumbar spinal cord after intramuscular and subcutaneous hind limb injections, and intraneural BTX-A sciatic nerve injections. Truncated SNAP-25 in ipsilateral spinal cord ventral horns and dorsal horns appeared after single peripheral BTX-A administrations, even at low intramuscular dose applied (5 U/kg). Cleaved SNAP-25 appearance in the spinal cord after BTX-A injection into the sciatic nerve was prevented by proximal intrasciatic injection of colchicine (5 mM, 2 μl). Cleaved SNAP-25 in ventral horn, using choline-acetyltransferase (ChAT) double labeling, was localized within cholinergic neurons. These results extend the recent findings on BTX-A retrograde axonal transport in facial and trigeminal nerve. Appearance of truncated SNAP-25 in spinal cord following low-dose peripheral BTX-A suggest that the axonal transport of BTX-A occurs commonly following peripheral application.  相似文献   
107.
Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.  相似文献   
108.
109.
Bulk flow constitutes a substantial part of the slow transport of soluble proteins in axons. Though the underlying mechanism is unclear, evidences indicate that intermittent, kinesin-based movement of large protein-aggregates aids this process. Choline acetyltransferase (ChAT), a soluble enzyme catalyzing acetylcholine synthesis, propagates toward the synapse at an intermediate, slow rate. The presynaptic enrichment of ChAT requires heterotrimeric kinesin-2, comprising KLP64D, KLP68D and DmKAP, in Drosophila. Here, we show that the bulk flow of a recombinant Green Fluorescent Protein-tagged ChAT (GFP::ChAT), in Drosophila axons, lacks particulate features. It occurs for a brief period during the larval stages. In addition, both the endogenous ChAT and GFP::ChAT directly bind to the KLP64D tail, which is essential for the GFP::ChAT entry and anterograde flow in axon. These evidences suggest that a direct interaction with motor proteins could regulate the bulk flow of soluble proteins, and thus establish their asymmetric distribution.  相似文献   
110.
Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号