首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1890篇
  免费   84篇
  国内免费   29篇
  2003篇
  2023年   6篇
  2022年   13篇
  2021年   13篇
  2020年   22篇
  2019年   31篇
  2018年   48篇
  2017年   20篇
  2016年   40篇
  2015年   36篇
  2014年   89篇
  2013年   94篇
  2012年   64篇
  2011年   80篇
  2010年   71篇
  2009年   66篇
  2008年   78篇
  2007年   82篇
  2006年   63篇
  2005年   62篇
  2004年   58篇
  2003年   52篇
  2002年   51篇
  2001年   42篇
  2000年   25篇
  1999年   30篇
  1998年   42篇
  1997年   52篇
  1996年   38篇
  1995年   31篇
  1994年   43篇
  1993年   36篇
  1992年   38篇
  1991年   33篇
  1990年   48篇
  1989年   32篇
  1988年   45篇
  1987年   28篇
  1986年   45篇
  1985年   36篇
  1984年   46篇
  1983年   18篇
  1982年   32篇
  1981年   31篇
  1980年   23篇
  1979年   18篇
  1978年   13篇
  1977年   14篇
  1976年   9篇
  1975年   6篇
  1974年   5篇
排序方式: 共有2003条查询结果,搜索用时 0 毫秒
11.
Summary Seedlings of nine tropical species varying in growth and carbon metabolism were exposed to twice the current atmospheric level of CO2 for a 3 month period on Barro Colorado Island, Panama. A doubling of the CO2 concentration resulted in increases in photosynthesis and greater water use efficiency (WUE) for all species possessing C3 metabolism, when compared to the ambient condition. No desensitization of photosynthesis to increased CO2 was observed during the 3 month period. Significant increases in total plant dry weight were also noted for 4 out of the 5 C3 species tested and in one CAM species, Aechmea magdalenae at high CO2. In contrast, no significant increases in either photosynthesis or total plant dry weight were noted for the C4 grass, Paspallum conjugatum. Increases in the apparent quantum efficiency (AQE) for all C3 species suggest that elevated CO2 may increase photosynthetic rate relative to ambient CO2 over a wide range of light conditions. The response of CO2 assimilation to internal Ci suggested a reduction in either the RuBP and/or Pi regeneration limitation with long term exposure to elevated CO2. This experiment suggests that: (1) a global rise in CO2 may have significant effects on photosynthesis and productivity in a wide variety of tropical species, and (2) increases in productivity and photosynthesis may be related to physiological adaptation(s) to increased CO2.  相似文献   
12.
We have performed a computational simulation of the aggregation and chaperonin-dependent reconstitution of dimeric prokaryotic ribulose bisphosphate carboxylase/oxygenase (Rubisco), based on the data of P. Goloubinoff et al. (1989, Nature 342, 884-889) and P. V. Viitanen et al. (1990, Biochemistry 29, 5665-5671). The aggregation is simulated by a set of 12 differential equations representing the aggregation of the Rubisco folding intermediate, Rubisco-I, with itself and with aggregates of Rubisco-I, leading up to dodecamers. Four rate constants, applying to forward or reverse steps in the aggregation process, were included. Optimal values for these constants were determined using the ellipsoid algorithm as implemented by one of us (Ecker, J.G. & Kupferschmid, M., 1988, Introduction to Operations Research, Wiley, New York, pp. 315-322). Intensive exploration of simpler aggregation models did not identify an alternative that could simulate the data as well as this one. The activity of the chaperonin in this system was simulated by using this aggregation model, combined with a model similar to that proposed by Goloubinoff et al. (1989). The model assumes that the chaperonin can bind the folding intermediate rapidly, and that the chaperonin complex releases the Rubisco molecule slowly, permitting time for its spontaneous folding while interacting with the chaperonin. This is followed by self-association of the folded Rubisco monomer to yield the active dimeric Rubisco. A modification of the model that simulates temperature effects was also constructed. The most important results we obtained indicate that the chaperonin-dependent reconstitution of Rubisco can be simulated adequately without invoking any catalysis of folding by the chaperonin. In addition, the simulations predict values for the association rate constant of Rubisco-I with the chaperonin, and other variables, that are subject to experimental verification.  相似文献   
13.
The bacterial symbionts of many marine invertebrates contain ribulose 1,5-bisphosphate (RuBP) carboxylase but apparently no carboxysomes, polyhedral bodies containing RuBP carboxylase. In the few cases where polyhedral bodies have been observed they have not been characterised enzymatically. Polyhedral bodies, 50–90 nm in diameter, were observed in thin cell sections of Thiobacillus thyasiris the putative symbiont of Thyasira flexuosa and RuBP carboxylase activity was detected in both soluble and particulate fractions after centrifugation of cell-free extracts. RuBP carboxylase purified 90-fold from the soluble fraction was of high molecular weight and consisted of large and small subunits, with molecular weights of 53,110 and 11,100 respectively. Particulate RuBP carboxylase activity was associated with polyhedral bodies 50–100 nm in diameter, as revealed by density gradient centrifugation and electron microscopy. Therefore, the polyhedral bodies were inferred to be carboxysomes. Native electrophoresis of isolated carboxysomes demonstrated a major band which comigrated with the purified RuBP carboxylase and three minor bands of lower molecular weight. Sodium dodecyl-sulphate (SDS) gel electrophoresis of SDS-dissociated carboxysomes demonstrated nine major polypeptides two of which were the large and small subunits of RuBP carboxylase. The RuBP carboxylase subunits represented 21% of the total carboxysomal protein. The most abundant polypeptide had a molecular weight of 40,500. Knowledge of carboxysome composition is necessary to provide an understanding of carboxysome function.Abbreviations FPLC fast performance liquid chromatography - IB isolation buffer - PAGE polyacrylamide gel electrophoresis - RuBP carboxylase - ribulose 1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl-sulphate  相似文献   
14.
苜蓿二磷酸核酮糖(RuBP)羧化酶体内活化作用的调节   总被引:6,自引:0,他引:6  
苜蓿RuBP羧化酶的初活性和活化作用在不饱和光强下与光合速率一样随光强增加而增加。缺硫培养苜蓿叶片的光合速率和RuBP羧化酶的含量、初活性及总活性均比对照有不同程度的降低,其中酶的初活性与光合速率两者减少的趋势比较接近,说明RuBP羧化酶的初活性可能在光合CO_2固定作用中具有决定作用。然而,缺硫植株中酶的活化作用比对照明显增高。酶的活化作用与叶片中的叶绿素,6-PG,NADPH及ATP相对酶含量的比值成正比,与体内的酶量成反比。  相似文献   
15.
Analysis of total nitrogen, chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and net photosynthesis rate was carried out on the leaves that support the developing pods in pigeon pea [ Cajanus cajan (L.) Millsp. cv. Prabhat] at several stages during pod filling. A continuous loss in all the above-mentioned parameters was observed during the course of pod development. When no pods were allowed to develop by continuous flower removal treatment, there was a considerable delay in loss of all these metabolic parameters. Excision of pods after their mid-development resulted not only in no further loss, but also in a significant recovery both of total nitrogen and of other investigated characteristics.  相似文献   
16.
The structure of spinach ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) has been investigated by tilted-view electron microscopy of negatively stained monolayer crystals and image processing. The structure determined consists of a cylinder of octagonal cross-section with a large central hole. Based on this and other available evidence a model for the arrangement of the large and small subunits is suggested with the eight small subunits arranged equatorially around the core of eight large subunits.Abbreviations LS large subunit - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - SS small subunit  相似文献   
17.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 1.1.39) (RuBPCase) was quantified using polyacrylamide-gel electrophoresis in whole 9-d-old first leaves of 14 genotypes of Triticum, and cellular RuBPCase levels calculated. Diploids, tetraploids and hexaploids were analysed and it was confirmed that the RuBPCase level per cell is closely related to ploidy in wheat. Inter-genotypic variation in RuBPCase levels per cell and per leaf were surveyed. It was found that the interactions between leaf size, cell size and RuBPCase levels result in small variations in RuBPCase levels per unit leaf area between genotypes.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   
18.
Summary The ribulose bisphosphate carboxylase/oxygenase (EC4.1.1.39) (RubisCO) large and small subunit genes from Anacystis nidulans have been cloned as a single fragment into M 13mp10 and pEMBL8 and expressed in Escherichia coli. From M 13mp10 a low yield of enzyme with high specific activity was obtained. The molecular weight of the active enzyme was 260 000 Da and of the inactive enzyme approximately 730 000 Da. The small and large subunits cloned separately did not express activity. The RubisCO gene cloned into pEMBL8 expressed activity up to 22 times that from the M 13 cloned RubisCO DNA. The RubisCO protein produced by the pEMBL cloned gene had a normal MW (550 000). Immunoprecipitation and polyacrylamide gel electrophoresis showed the presence of both large and small subunits.  相似文献   
19.
Mode of high temperature injury to wheat during grain development   总被引:5,自引:0,他引:5  
High temperature stress adversely affects wheat growth in many important production regions, but the mode of injury is unclear. Wheat ( Triticum aestivum L. cv. Newton) was grown under controlled conditions to determine the relative magnitude and sequences of responses of source and sink processes to high temperature stress during grain development. Regimes of 25°C day/15°C night, 30°C day/20°C night, and 35°C day/25°C night from 5 days after anthesis to maturity differentially affected source and sink processes. High temperatures accelerated the normal decline in viable leaf blade area and photosynthetic activities per unit leaf area. Electron transport, as measured by Hill reaction activity, declined earlier and faster than other photosynthetic processes at the optimum temperature of 25/15 °C and at elevated temperatures. Changes in RUBP carboxylase activities were similar in direction but smaller in magnitude than changes in photosynthesic rate. Increased protease activity during senscence was markedly accentuated by high temperature stress. Specific protease activity increased 4-fold at 25/15 °C and 28-fold at 35/25 °C from 0 to 21 days after initiation of temperature treatments. Grain-filling rate decreased from the lowest to the highest temperature, but the change was smaller than the decrease in grain-filling duration at the same temperatures. We concluded that a major effect of high temperature is acceleration of senescence, including cessation of vegetative and reproductive growth, deterioration of photosynthetic activities, and degradation of proteinaceous constituents.  相似文献   
20.
J. R. Evans  R. B. Austin 《Planta》1986,167(3):344-350
The specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) in crude extracts of leaves from euploid, amphiploid and alloplasmic lines of wheat fell into high or low categories (3.75 or 2.70 mol·mg–1·min–1, 30°C). For the alloplasmic lines, where the same hexaploid nuclear genome was substituted into different cytoplasms, the specific activity of RuBPCase was consistent with the type of cytoplasm (high for the B and S cytoplasms and low for the A and D cytoplasms). There was no evidence from the euploid and amphiploid lines that small subunits encoded in different nuclear genomes influenced the specific activity. High specific activity was conferred by possession of the chloroplast genome of the B-type cytoplasm which encodes the large subunit of RuBPCase. All lines with a cytoplasm derived from the Sitopsis section of wheat, with the exception of Aegilops longissima and A. speltoides 18940, had RuBPCase with high specific activity. In contrast with the euploid lines of A. longissima, the alloplasmic line containing A. longissima cytoplasm from a different source had RuBPCase with high specific activity. The difference in specific activity found here in-vitro was not apparent in-vivo when leaf gas exchange was measured.Abbreviation RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号