首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1747篇
  免费   115篇
  国内免费   35篇
  2024年   2篇
  2023年   27篇
  2022年   41篇
  2021年   51篇
  2020年   61篇
  2019年   47篇
  2018年   62篇
  2017年   46篇
  2016年   66篇
  2015年   94篇
  2014年   98篇
  2013年   145篇
  2012年   75篇
  2011年   95篇
  2010年   69篇
  2009年   103篇
  2008年   80篇
  2007年   79篇
  2006年   77篇
  2005年   75篇
  2004年   71篇
  2003年   58篇
  2002年   59篇
  2001年   34篇
  2000年   45篇
  1999年   24篇
  1998年   15篇
  1997年   19篇
  1996年   11篇
  1995年   14篇
  1994年   14篇
  1993年   10篇
  1992年   12篇
  1991年   8篇
  1990年   10篇
  1989年   19篇
  1988年   7篇
  1987年   14篇
  1986年   6篇
  1985年   5篇
  1984年   8篇
  1983年   5篇
  1982年   10篇
  1981年   2篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   3篇
  1974年   1篇
  1971年   2篇
排序方式: 共有1897条查询结果,搜索用时 15 毫秒
81.
The anterior cingulate cortex (ACC) is critical for brain functions including learning, memory, fear and pain. Long-term synaptic potentiation (LTP), a cellular model for learning and memory, has been reported in the ACC neurons. Unlike LTP in the hippocampus and amygdala, two key structures for memory and fear, little is known about the synaptic mechanism for the expression of LTP in the ACC. Here we use whole-cell patch clamp recordings to demonstrate that cingulate LTP requires the functional recruitment of GluR1 AMPA receptors; and such events are rapid and completed within 5-10 min after LTP induction. Our results demonstrate that the GluR1 subunit is essential for synaptic plasticity in the ACC and may play critical roles under physiological and pathological conditions.  相似文献   
82.
83.
Protein transport between the membranous compartments of the eukaryotic cells is mediated by the constant fission and fusion of the membrane-bounded vesicles from a donor to an acceptor membrane. While there are many membrane remodelling complexes in eukaryotes, COPII, COPI, and clathrin-coated vesicles are the three principal classes of coat protein complexes that participate in vesicle trafficking in the endocytic and secretory pathways. These vesicle-coat proteins perform two key functions: deforming lipid bilayers into vesicles and encasing selective cargoes. The three trafficking complexes share some commonalities in their structural features but differ in their coat structures, mechanisms of cargo sorting, vesicle formation, and scission. While the structures of many of the proteins involved in vesicle formation have been determined in isolation by X-ray crystallography, elucidating the proteins' structures together with the membrane is better suited for cryogenic electron microscopy (cryo-EM). In recent years, advances in cryo-EM have led to solving the structures and mechanisms of several vesicle trafficking complexes and associated proteins.  相似文献   
84.
Methane production in littoral sediment of Lake Constance   总被引:7,自引:0,他引:7  
Maximum rates of CH4 production in the littoral sediment were observed in 2–5 cm depth. The CH4 production rates increased during the year from about 5 mmol m−2d−1 in December to a maximum of about 95 mmol m−2d−1 in September. CH4 production rates showed a temperature optimum at 30°C and an apparent activation energy of 76 kJ mol−1. A large part of the seasonality of CH4 production could be ascribed to the change of the sediment temperature. Most of the produced CH4 was lost by ebullition. Gas bubbles contained about 60–70% CH4 with an average δ13C of −56.2% and δD of −354%, and 2% CO2 with an average δ13C of −14.1% indicating that CH4 was produced from methyl carbon, i.e. mainly using acetate as methanogenic substrate. This result was confirmed by inhibition of methanogenesis with chloroform which resulted in an accumulation rate of acetate equivalent to 81% of the rate of CH4 production. Most probable numbers of methanogenic bacteria were in the order of 104 bacteria g−1d.w. sediment for acetate-, methanol- or formate-utilizing, and of 105 for H2-utilizing methanogens. The turnover times of acetate were in the order of 2.3–4.8 h which, with in situ acetate concentrations of about 25–50 μM, resulted in rates of acetate turnover which were comparable to the rates of CH4 production. The respiratory index (RI) showed that [2−14C]acetate was mainly used by methanogenesis rather than by respiratory processes, although the zone of CH4 production in the sediment overlapped with the zone of sulfate reduction.  相似文献   
85.
Arrestins and their yeast homologs, arrestin-related trafficking adaptors (ARTs), share a stretch of 29 amino acids called the ART motif. However, the functionality of that motif is unknown. We now report that deleting this motif prevents agonist-induced ubiquitination of β-arrestin2 (β-arr2) and blocks its association with activated G protein–coupled receptors (GPCRs). Within the ART motif, we have identified a conserved phenylalanine residue, Phe116, that is critical for the formation of β-arr2–GPCR complexes. β-arr2 Phe116Ala mutant has negligible effect on blunting β2-adrenergic receptor–induced cAMP generation unlike β-arr2, which promotes rapid desensitization. Furthermore, available structures for inactive and inositol hexakisphosphate 6–activated forms of bovine β-arr2 revealed that Phe116 is ensconced in a hydrophobic pocket, whereas the adjacent Phe117 and Phe118 residues are not. Mutagenesis of Phe117 and Phe118, but not Phe116, preserves GPCR interaction of β-arr2. Surprisingly, Phe116 is dispensable for the association of β-arr2 with its non-GPCR partners. β-arr2 Phe116Ala mutant presents a significantly reduced protein half-life compared with β-arr2 and undergoes constitutive Lys-48-linked polyubiquitination, which tags proteins for proteasomal degradation. We also found that Phe116 is critical for agonist-dependent β-arr2 ubiquitination with Lys-63-polyubiquitin linkages that are known mediators of protein scaffolding and signal transduction. Finally, we have shown that β-arr2 Phe116Ala interaction with activated β2-adrenergic receptor can be rescued with an in-frame fusion of ubiquitin. Taken together, we conclude that Phe116 preserves structural stability of β-arr2, regulates the formation of β-arr2–GPCR complexes that inhibit G protein signaling, and promotes subsequent ubiquitin-dependent β-arr2 localization and trafficking.  相似文献   
86.
The biosynthesis of many sulfur-containing molecules depends on cysteine as a sulfur source. Both the cysteine desulfurase (CD) and rhodanese (Rhd) domain–containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human, but their connection is not yet described in plants. The existence of natural chimeric proteins containing both CD and Rhd domains in specific bacterial genera, however, suggests a general interaction between these proteins. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain–containing protein, the sulfurtransferase 18 (STR18), and a CD isoform referred to as ABA3, and compare these biochemical features to those of a natural CD–Rhd fusion protein from the bacterium Pseudorhodoferax sp. We observed that the bacterial enzyme is bifunctional exhibiting both CD and STR activities using l-cysteine and thiosulfate as sulfur donors but preferentially using l-cysteine to catalyze transpersulfidation reactions. In vitro activity assays and mass spectrometry analyses revealed that STR18 stimulates the CD activity of ABA3 by reducing the intermediate persulfide on its catalytic cysteine, thereby accelerating the overall transfer reaction. We also show that both proteins interact in planta and form an efficient sulfur relay system, whereby STR18 catalyzes transpersulfidation reactions from ABA3 to the model acceptor protein roGFP2. In conclusion, the ABA3–STR18 couple likely represents an uncharacterized pathway of sulfur trafficking in the cytosol of plant cells, independent of ABA3 function in molybdenum cofactor maturation.  相似文献   
87.
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   
88.
In a combination of biochemical and immunoelectron-microscopical approaches we studied intracellular trafficking and localization of the endoplasmic-reticulum (ER)-formed complexes of murine MHC class II molecule I-Ab and an antigenic peptide E52–68 covalently linked to its -chain. The association with the peptide in the ER leads to sharp acceleration of the intracellular trafficking of the complexes to the plasma membrane. Within the cells, E52–68:I-Ab complexes accumulate in the multivesicular MHC class II compartment (MIIC), but not in denser multilaminar or intermediate type MIICs. The changes in the trafficking of ER-formed complexes result solely from the presence of the tethered peptide, since wild-type class II molecules traffic similarly in bare lymphocyte syndrome cells and in wild-type antigen-presenting cells.  相似文献   
89.
The ER/Golgi soluble NSF attachment protein receptor (SNARE) membrin, rsec22b, and rbet1 are enriched in approximately 1-micrometer cytoplasmic structures that lie very close to the ER. These appear to be ER exit sites since secretory cargo concentrates in and exits from these structures. rsec22b and rbet1 fused to fluorescent proteins are enriched at approximately 1-micrometer ER exit sites that remained more or less stationary, but periodically emitted streaks of fluorescence that traveled generally in the direction of the Golgi complex. These exit sites were reused and subsequent tubules or streams of vesicles followed similar trajectories. Fluorescent membrin- enriched approximately 1-micrometer peripheral structures were more mobile and appeared to translocate through the cytoplasm back and forth, between the periphery and the Golgi area. These mobile structures could serve to collect secretory cargo by fusing with ER-derived vesicles and ferrying the cargo to the Golgi. The post-Golgi SNAREs, syntaxin 6 and syntaxin 13, when fused to fluorescent proteins each displayed characteristic patterns of movement. However, syntaxin 13 was the only SNARE whose life cycle appeared to involve interactions with the plasma membrane. These studies reveal the in vivo spatiotemporal dynamics of SNARE proteins and provide new insight into their roles in membrane trafficking.  相似文献   
90.
LY-A strain is a Chinese hamster ovary cell mutant resistant to sphingomyelin (SM)-directed cytolysin and has a defect in de novo SM synthesis. Metabolic labeling experiments with radioactive serine, sphingosine, and choline showed that LY-A cells were defective in synthesis of SM from these precursors, but not syntheses of ceramide (Cer), glycosphingolipids, or phosphatidylcholine, indicating a specific defect in the conversion of Cer to SM in LY-A cells. In vitro experiments showed that the specific defect of SM formation in LY-A cells was not due to alterations in enzymatic activities responsible for SM synthesis or degradation. When cells were treated with brefeldin A, which causes fusion of the Golgi apparatus with the endoplasmic reticulum (ER), de novo SM synthesis in LY-A cells was restored to the wild-type level. Pulse-chase experiments with a fluorescent Cer analogue, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-D-erythro-sphingosine (C5-DMB-Cer), revealed that in wild-type cells C5-DMB-Cer was redistributed from intracellular membranes to the Golgi apparatus in an intracellular ATP-dependent manner, and that LY-A cells were defective in the energy-dependent redistribution of C5-DMB-Cer. Under ATP-depleted conditions, conversion of C5-DMB-Cer to C5-DMB-SM and of [3H]sphingosine to [3H]SM in wild-type cells decreased to the levels in LY-A cells, which were not affected by ATP depletion. ER-to-Golgi apparatus trafficking of glycosylphosphatidylinositol-anchored or membrane-spanning proteins in LY-A cells appeared to be normal. These results indicate that the predominant pathway of ER-to-Golgi apparatus trafficking of Cer for de novo SM synthesis is ATP dependent and that this pathway is almost completely impaired in LY-A cells. In addition, the specific defect of SM synthesis in LY-A cells suggests different pathways of Cer transport for glycosphingolipids versus SM synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号