首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15519篇
  免费   548篇
  国内免费   391篇
  2024年   12篇
  2023年   114篇
  2022年   256篇
  2021年   252篇
  2020年   281篇
  2019年   469篇
  2018年   483篇
  2017年   220篇
  2016年   305篇
  2015年   430篇
  2014年   851篇
  2013年   1005篇
  2012年   534篇
  2011年   967篇
  2010年   661篇
  2009年   779篇
  2008年   799篇
  2007年   884篇
  2006年   820篇
  2005年   748篇
  2004年   628篇
  2003年   584篇
  2002年   494篇
  2001年   356篇
  2000年   322篇
  1999年   336篇
  1998年   363篇
  1997年   286篇
  1996年   255篇
  1995年   262篇
  1994年   220篇
  1993年   169篇
  1992年   158篇
  1991年   128篇
  1990年   112篇
  1989年   108篇
  1988年   88篇
  1987年   89篇
  1986年   45篇
  1985年   87篇
  1984年   124篇
  1983年   86篇
  1982年   81篇
  1981年   46篇
  1980年   43篇
  1979年   35篇
  1978年   20篇
  1977年   17篇
  1976年   11篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
141.
Elevation in intracellular Ca2+ acting via protein kinase C (PKC) is shown to regulate tight junction resistance in T84 cells, a human colon cancer line and a model Cl secretory epithelial cell. The Ca2+ ionophore A23187, which was used to increase the intracellular Ca2+ concentration, caused a decrease in tight junction resistance in a concentration- and time-dependent manner. Dual Na+/mannitol serosal-to-mucosal flux analysis performed across the T84 monolayers treated with 2 μm A23187 revealed that A23187 increased both fluxes and that in the presence of ionophore there was a linear relationship between the Na+ and mannitol fluxes with a slope of 56.4, indicating that the decrease in transepithelial resistance was due to a decrease in tight junction resistance. Whereas there was no effect of 0.1 μm A23187, 1 or 2 μm produced a 55% decrease in baseline resistance in 1 hr and 10 μm decreased resistance more than 80%. The A23187-induced decrease in tight junction resistance was partially reversible by washing 3 times with a Ringer's-HCO3 solution containing 1% BSA. The A23187 effect on resistance was dependent on intracellular Ca2+; loading the T84 cells with the intracellular Ca2+ chelator BAPTA significantly reduced the decrease in tight junction resistance caused by A23187. This intracellular Ca2+ effect was mediated by protein kinase C and not calmodulin. While the protein kinase C antagonist H-7 totally prevented the action of A23187 on tight junction resistance, the Ca2+/calmodulin inhibitor W13 did not have any effect. Sphingosine, another inhibitor of PKC, partially reduced the A23187-induced decline in tight junction resistance. The PKC agonist PMA mimicked the A23187 effect on resistance, although the effect was delayed up to 1 hr after exposure. In addition, however, PMA also caused an earlier increase in resistance, indicating it had an additional effect in addition to mimicking the effect of elevating Ca2+. The effects of a phospholipase inhibitor (mepacrine) and of inhibitors of arachidonic acid metabolism (indomethacin for the cyclooxygenase pathway, NDGA for the lipoxygenase pathway, and SKF 525A for the epoxygenase pathway) on the A23187 action were also examined. None of these agents altered the A23187-induced decrease in resistance. Monolayers exposed to 2 μm A23187 for 1 hr were stained with fluorescein conjugated phalloidin, revealing that neighboring cells did not part one from another and that A23187 did not have a detectable effect on distribution of F-actin in the perijunctional actomyosin ring. The results indicate that elevation in intracellular Ca2+ decreases tight junction resistance in the T84 monolayer, acting through protein kinase C by a mechanism which does not involve visible changes in the perijunctional actomyosin ring. Received: 14 July 1995/Revised: 25 September 1995  相似文献   
142.
The Ca2+-activated maxi K+ channel is predominant in the basolateral membrane of the surface cells in the distal colon. It may play a role in the regulation of the aldosterone-stimulated Na+ reabsorption from the intestinal lumen. Previous measurements of these basolateral K+ channels in planar lipid bilayers and in plasma membrane vesicles have shown a very high sensitivity to Ca2+ with a K 0.5 ranging from 20 nm to 300 nm, whereas other studies have a much lower sensitivity to Ca2+. To investigate whether this difference could be due to modulation by second messenger systems, the effect of phosphorylation and dephosphorylation was examined. After addition of phosphatase, the K+ channels lost their high sensitivity to Ca2+, yet they could still be activated by high concentrations of Ca2+ (10 μm). Furthermore, the high sensitivity to Ca2+ could be restored after phosphorylation catalyzed by a cAMP dependent protein kinase. There was no effect of addition of protein kinase C. In agreement with the involvement of enzymatic processes, lag periods of 30–120 sec for dephosphorylation and of 10–280 sec for phosphorylation were observed. The phosphorylation state of the channel did not influence the single channel conductance. The results demonstrate that the high sensitivity to Ca2+ of the maxi K+ channel from rabbit distal colon is a property of the phosphorylated form of the channel protein, and that the difference in Ca2+ sensitivity between the dephosphorylated and phosphorylated forms of the channel protein is more than one order of magnitude. The variety in Ca2+ sensitivities for maxi K+ channels from tissue to tissue and from different studies on the same tissue could be due to modification by second messenger systems. Received: 28 February 1995/Revised: 22 December 1995  相似文献   
143.
We have characterized a Na+/H+ exchanger in the membrane of isolated zymogen granules (ZG) from rat exocrine pancreas and investigated its role in secretagogue-induced enzyme secretion. ZG Na+/H+ exchanger activity was estimated by measuring Na+ or Li+ influx and consequent osmotic swelling and lysis of ZG incubated in Na- or Li-acetate. Alternatively, intragranule pH was investigated by measuring absorbance changes in ZG which had been preloaded with the weak base acridine orange. Na+- or Li+-dependent ZG lysis was enhanced by increasing inward to outward directed H+ gradients. Na+-dependent ZG lysis was not prevented by an inside-positive K+ diffusion potential generated by valinomycin which argues against parallel operation of separate electrogenic Na+ and H+ permeabilities and for coupled Na+/H+ exchange through an electroneutral carrier. Na+- and Li+-dependent ZG lysis was inhibited by EIPA (EC50∼25 μm) and benzamil (EC50∼100 μm), but only weakly by amiloride. Similarly, absorbance changes due to release of acridine orange from acidic granules into the medium were obtained with Na+ and Li+ salts only, and were inhibited by EIPA, suggesting the presence of a Na+/H+ exchanger in the membrane. Na+ dependent lysis of ZG was inhibited by 0.5 mm MgATP and MgATP-γ-S by about 60% and 35%, respectively. Inhibition by MgATP was prevented by incubation of ZG with alkaline phosphatase (100 U/ml), or by the calmodulin antagonists calmidazolium (0.75 μm), trifluoperazine (100 μm) and W-7 (500 μm), suggesting that the ZG Na+/H+ exchanger is regulated by a ZG membrane-bound calmodulin-dependent protein kinase. Na+ dependence of secretagogue (CCK-OP)-stimulated amylase secretion was investigated in digitonin permeabilized rat pancreatic acini and was higher in acini incubated in Na+ containing buffer (30 mm NaCl/105 mm KCl buffer; 6.4 ± 0.4% of total amylase above basal) compared to buffer without Na+ (0 mm NaCl/135 mm KCl buffer; 4.7 ± 0.4% of total amylase above basal, P < 0.03). EIPA (50 μm) reduced CCK-OP-induced amylase secretion in Na+ containing buffer from 7.5 ± 0.6% to 4.1 ± 0.8% (P < 0.02). In the absence of Na+ in the buffer, CCK-OP-stimulated amylase release was not inhibited by 50 μm EIPA. The data suggest that an amiloride insensitive, EIPA inhibitable Na+/H+ exchanger is present in ZG membranes, which is stimulated by calmodulin antagonists and could be involved in secretagogue-induced enzyme secretion from rat pancreatic acini. Received: 7 December 1995/Revised: 2 April 1996  相似文献   
144.
Abstract: Although cyclic AMP (cAMP) has been reported to cross talk with the protein kinase C (PKC) system, effects of elevated intracellular cAMP on the activities of specific PKC isoforms have not been studied. We report findings from a permeabilized cell assay that was used to examine changes in the activity of the atypical PKC isoforms brought about by exposure of PC12 cells to agents that elevate intracellular cAMP. We found that increases in intracellular cAMP led to rapid stimulation of atypical PKC activity, 40–70% above control, for a sustained period of time, a response that occurred independent of the phorbol 12-myristate 13-acetate (PMA)-sensitive PKC isoforms. Changes in intracellular cAMP levels resulted in a dose-dependent redistribution of ζ-PKC to the cytoplasm with a concomitant increase in the phosphorylation state of the enzyme. Incubation of purified ζ-PKC with increasing concentrations of PKA likewise caused a twofold increase in the phosphorylation state of ζ-PKC. In contrast to the positive effect that PKA-mediated phosphorylation had on the activity of ζ-PKC, the enzyme displayed reduced binding to ras when phosphorylated. Taken together, these findings are consistent with the hypothesis that protein phosphorylation of PKC acts as a positive effector of its enzyme activity and may serve as a negative modulator for interaction with other proteins.  相似文献   
145.
Abstract: Arachidonic acid and oleoylacetylglycerol enhance depolarization-evoked glutamate release from hippocampal mossy fiber nerve endings. It was proposed this is a Ca2+-dependent effect and that protein kinase C is involved. Here we report that arachidonic acid and oleoylacetylglycerol synergistically potentiate the glutamate release induced by the Ca2+ ionophore ionomycin. The Ca2+ dependence of this effect was established, as removal of Ca2+ eliminated evoked release and the lipid-dependent potentiation. Also, Ca2+ channel blockers attenuated ionomycin- and KCI-evoked exocytosis, as well as the facilitating effects of the lipid mediators. Although facilitation required Ca2+, it may not involve an enhancement of evoked Ca2+ accumulation, because ionomycin-dependent glutamate release was potentiated under conditions that did not increase ionomycin-induced Ca2+ accumulation. Also, the facilitation may not depend on inhibition of K+ efflux, because enhanced release was observed in the presence of increasing concentrations of 4-aminopyridine and diazoxide did not reduce the lipid-dependent potentiation of exocytosis. In contrast, disruption of cytoskeleton organization with cytochalasin D occluded the lipid-dependent facilitations of both KCI- and ionomycin-evoked glutamate release. In addition, arachidonic acid plus glutamatergic or cholinergic agonists enhanced glutamate release, whereas a role for protein kinase C in the potentiation of exocytosis was substantiated using kinase inhibitors. It appears that the lipid-dependent facilitation of glutamate release from mossy fiber nerve endings requires Ca2+ and involves multiple presynaptic effects, some of which depend on protein kinase C.  相似文献   
146.
Abstract: We have shown previously that a neurofilament (NF)-associated kinase (NFAK) extracted from chicken NF preparations phosphorylates selectively the middle molecular mass NF subunit (NF-M). Here we show that the major kinase activity in NFAK is indistinguishable from enzymes of the casein kinase I (CKI) family based on the following criteria: (1) inhibition of NFAK phosphorylation by the selective CKI inhibitor CKI-7, (2) the similarity in substrate specificity of NFAK and authentic CKI, (3) the correspondence of two-dimensional phosphopeptide maps of NF-M phosphorylated in vitro by NFAK with those generated by CKI under similar conditions, and (4) immunological cross-reactivity of NFAK with an antibody raised against CKI. We have also identified Ser502, Ser528, and Ser536 as phosphorylation sites by NFAK/CKI in vitro, each of which is also phosphorylated in vivo. All three serines are found in peptides with CKI phosphorylation consensus sequences, and Ser528 and Ser536 and flanking amino acids are highly conserved in higher vertebrate NF-M sequences. Neither Ser502 nor Ser536 has been identified previously as NF-M phosphorylation sites.  相似文献   
147.
Abstract: To determine whether protein kinase C (PKC) mediates release of peptides from sensory neurons, we examined the effects of altering PKC activity on resting and evoked release of substance P (SP) and calcitonin gene-related peptide (CGRP). Exposing rat sensory neurons in culture to 10 or 50 n M phorbol 12,13-dibutyrate (PDBu) significantly increased SP and CGRP release at least 10-fold above resting levels, whereas the inactive 4α-PDBu analogue at 100 n M had no effect on release. Furthermore, 100 n M bradykinin increased peptide release approximately fivefold. Down-regulation of PKC significantly attenuated the release of peptides evoked by either PDBu or bradykinin. PDBu at 1 n M or 1-oleoyl-2-acetyl- sn -glycerol at 50 µ M did not alter resting release of peptides, but augmented potassium- and capsaicin-stimulated release of both SP and CGRP approximately twofold. This sensitizing action of PKC activators on peptide release was significantly reduced by PKC down-regulation or by pretreating cultures with 10 n M staurosporine. These results establish that activation of PKC is important in the regulation of peptide release from sensory neurons. The PKC-induced enhancement of peptide release may be a mechanism underlying the neuronal sensitization that produces hyperalgesia.  相似文献   
148.
149.
Abstract: Although serine/threonine phosphorylation has been more commonly recognized as a mechanism to modulate the function of ion channels and receptors, tyrosine phosphorylation is under increasing scrutiny. An important subtype of glutamate receptor, the NMDA receptor, is shown to be regulated by insulin via protein tyrosine kinase (PTK). NMDA currents through cloned receptors are potentiated by insulin in a subunit-specific manner. The insulin-mediated potentiation of NMDA current is diminished by inhibitors of PTKs. At least one exogenous cytosolic PTK, pp60c- src , is also able to potentiate NMDA current. Because later application of PTK inhibitors can reverse the seemingly stable insulin-mediated potentiation of NMDA current, it appears that tyrosine residues responsible for potentiation are continually rephosphorylated by some long-term PTK activity that was induced via insulin treatment.  相似文献   
150.
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine protein kinase that is rapidly activated in response to various growth factors and tumor promoters in mammalian cultured cells. The kinase cascade including MAPK and its direct activator, MAPK kinase (MAPKK), is now believed to transmit various extracellular signals into their intracellular targets in eukaryotic cells. It has been reported that activation of MAPKK and MAPK occurs during the meiotic maturation of oocytes in several species, including Xenopus laevis . Studies with neutralizing antibodies against MAPKK, MAPK phosphatases and constitutively active MAPKK or MAPK have revealed a crucial role of the MAPKK/MAPK cascade in a number of developmental processes in Xenopus oocytes and embryos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号