首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   901篇
  免费   95篇
  国内免费   46篇
  1042篇
  2024年   2篇
  2023年   28篇
  2022年   20篇
  2021年   51篇
  2020年   42篇
  2019年   48篇
  2018年   35篇
  2017年   32篇
  2016年   31篇
  2015年   51篇
  2014年   37篇
  2013年   65篇
  2012年   43篇
  2011年   42篇
  2010年   35篇
  2009年   40篇
  2008年   49篇
  2007年   41篇
  2006年   44篇
  2005年   29篇
  2004年   27篇
  2003年   31篇
  2002年   29篇
  2001年   17篇
  2000年   16篇
  1999年   17篇
  1998年   9篇
  1997年   16篇
  1996年   18篇
  1995年   12篇
  1994年   7篇
  1993年   9篇
  1992年   10篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   9篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1042条查询结果,搜索用时 15 毫秒
91.
92.
During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N‐fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin‐adsorbed N and soil extractable P in the top 10‐cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P‐limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades.  相似文献   
93.
本文研究了浙江省生猪供给系统变量间的线性与非线性回归函数关系,确定了系统反馈结构.  相似文献   
94.
Arguably, one of the foremost distinctions between life and non-living matter is the ability to sense environmental changes and respond appropriately—an ability that is invested in every living cell. Within a single cell, this function is largely carried out by networks of signaling molecules. However, the details of how signaling networks help cells make complicated decisions are still not clear. For instance, how do cells read graded, analog stress signals but convert them into digital live-or-die responses? The answer to such questions may originate from the fact that signaling molecules are not static but dynamic entities, changing in numbers and activity over time and space. In the past two decades, researchers have been able to experimentally monitor signaling dynamics and use mathematical techniques to quantify and abstract general principles of how cells process information. In this review, the authors first introduce and discuss various experimental and computational methodologies that have been used to study signaling dynamics. The authors then discuss the different types of temporal dynamics such as oscillations and bistability that can be exhibited by signaling systems and highlight studies that have investigated such dynamics in physiological settings. Finally, the authors illustrate the role of spatial compartmentalization in regulating cellular responses with examples of second-messenger signaling in cardiac myocytes.  相似文献   
95.
The entrainment limits to light‐dark cycles can be modified by the experimental conditions under which they are tested. Among the factors that may influence entrainment is the amount of wheel running exerted by the animal. In the present work, the effects of transitory and continuous wheel running on entrainment to light‐dark cycles were tested using a range of T cycles at the entrainment limits. Four groups of female hamsters were submitted to 1 h stepwise changes in T cycles. Two groups were exposed to T cycles of which the period was shortened at the lower limit from T22 to T18, and the other two groups were exposed to cycles that lengthened at the upper limit from T27 to T32. One of the groups at the lower limit and one at the upper limit had continuous access to a running wheel, while the others had the wheel locked, except at certain T when a lack of period control by T cycle appeared. The study demonstrates that access to running wheel widens the limits of entrainment to LD cycles. Specifically, the following observations were made: the effects of wheel running for entrainment were more evident in the groups with continuous access to wheel, as they did entrain to T19 and T32; continuous access to a wheel produced aftereffects only after T19, but not under T32; and when animals without a wheel showed relative coordination, unlocking the wheel favored entrainment in all the animals at T31, but in only 1 out 6 at T19. All of these indicate a different effect of the wheel running on the upper and lower limits of entrainment.  相似文献   
96.
97.
Ecosystems worldwide depend on habitat‐forming foundation species that often facilitate themselves with increasing density and patch size, while also engaging in facultative mutualisms. Anthropogenic global change (e.g., climate change, eutrophication, overharvest, land‐use change), however, is causing rapid declines of foundation species‐structured ecosystems, often typified by sudden collapse. Although disruption of obligate mutualisms involving foundation species is known to precipitate collapse (e.g., coral bleaching), how facultative mutualisms (i.e., context‐dependent, nonbinding reciprocal interactions) affect ecosystem resilience is uncertain. Here, we synthesize recent advancements and combine these with model analyses supported by real‐world examples, to propose that facultative mutualisms may pose a double‐edged sword for foundation species. We suggest that by amplifying self‐facilitative feedbacks by foundation species, facultative mutualisms can increase foundation species’ resistance to stress from anthropogenic impact. Simultaneously, however, mutualism dependency can generate or exacerbate bistability, implying a potential for sudden collapse when the mutualism's buffering capacity is exceeded, while recovery requires conditions to improve beyond the initial collapse point (hysteresis). Thus, our work emphasizes the importance of acknowledging facultative mutualisms for conservation and restoration of foundation species‐structured ecosystems, but highlights the potential risk of relying on mutualisms in the face of global change. We argue that significant caveats remain regarding the determination of these feedbacks, and suggest empirical manipulation across stress gradients as a way forward to identify related nonlinear responses.  相似文献   
98.
Little of the historical extent of tallgrass prairie ecosystems remains in North America, and therefore there is strong interest in restoring prairies. However, slow‐growing prairie plants are initially weak competitors with the fast‐growing yet short‐lived weedy plant species that are typically abundant in recently established prairie restorations. One way to aid establishment of slow‐growing plant species is through adding soil amendments to prairie restorations before planting. Arbuscular mycorrhizal (AM) fungi form mutualisms with the roots of most terrestrial plants and are particularly important for the growth of slow‐growing prairie plant species. As prairie ecosystems are adapted to fires that leave biochar (charred organic material) in the soil, adding biochar as well as AM fungal strains from undisturbed remnant prairies into the soil of prairie restorations may improve restoration outcomes. Here, we test this prediction during the first four growing seasons of a prairie restoration. When prairie plant seedlings were inoculated prior to planting into the field with AM fungi derived from remnant prairies, that one‐time inoculation significantly increased growth of five of the nine tested plant species through at least two growing seasons. This long‐term benefit of AM fungal inoculation was unaffected by biochar addition to the soil. Biochar application rates of at least 10 tons/ha significantly decreased Coreopsis tripteris growth but acted synergistically with AM fungal inoculation to significantly improve survival of Schizachyrium scoparium. Overall, inoculation with native AM fungi can help promote prairie plant establishment, but concomitant use of biochar soil amendments had relatively little effect.  相似文献   
99.
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree mycorrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are characterised by thin forest floors and low soil C : N ratio, were invaded to a greater extent by non‐native invasive species than ectomycorrhizal (ECM) dominant forests. Understory native species cover and richness had no strong associations with AM tree dominance. We also found no difference in the mycorrhizal type composition of understory invaders between AM and ECM dominant forests. Our results indicate that dominant forest tree mycorrhizal type is closely linked with understory invasions. The increased invader abundance in AM dominant forests can further facilitate nutrient cycling, leading to the alteration of ecosystem structure and functions.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号