首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   901篇
  免费   95篇
  国内免费   46篇
  1042篇
  2024年   2篇
  2023年   28篇
  2022年   20篇
  2021年   51篇
  2020年   42篇
  2019年   48篇
  2018年   35篇
  2017年   32篇
  2016年   31篇
  2015年   51篇
  2014年   37篇
  2013年   65篇
  2012年   43篇
  2011年   42篇
  2010年   35篇
  2009年   40篇
  2008年   49篇
  2007年   41篇
  2006年   44篇
  2005年   29篇
  2004年   27篇
  2003年   31篇
  2002年   29篇
  2001年   17篇
  2000年   16篇
  1999年   17篇
  1998年   9篇
  1997年   16篇
  1996年   18篇
  1995年   12篇
  1994年   7篇
  1993年   9篇
  1992年   10篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   9篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1042条查询结果,搜索用时 0 毫秒
31.
The classical view of cortical information processing is that of a bottom-up process in a feedforward hierarchy. However, psychophysical, anatomical, and physiological evidence suggests that top-down effects play a crucial role in the processing of input stimuli. Not much is known about the neural mechanisms underlying these effects. Here we investigate a physiologically inspired model of two reciprocally connected cortical areas. Each area receives bottom-up as well as top-down information. This information is integrated by a mechanism that exploits recent findings on somato-dendritic interactions. (1) This results in a burst signal that is robust in the context of noise in bottom-up signals. (2) Investigating the influence of additional top-down information, priming-like effects on the processing of bottom-up input can be demonstrated. (3) In accordance with recent physiological findings, interareal coupling in low-frequency ranges is characteristically enhanced by top-down mechanisms. The proposed scheme combines a qualitative influence of top-down directed signals on the temporal dynamics of neuronal activity with a limited effect on the mean firing rate of the targeted neurons. As it gives an account of the system properties on the cellular level, it is possible to derive several experimentally testable predictions.  相似文献   
32.
Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a ‘press’, for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances.  相似文献   
33.
34.
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the ‘theatre’ in which ecology and evolution are two interacting ‘players’. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.  相似文献   
35.
This research focused on how adult female brown‐headed cowbirds, Molothrus ater, regulate social feedback on a group level to shape the development of male song. Specifically, females produce rapid wing movements in response to male song, termed ‘wing strokes,’ which have been shown to shape male song and predict song quality. These effects have been documented in captive dyads and triads, but not in more naturalistic flocks, where song development actually occurs. Here, we studied wing stroking in small seminatural flocks of differing female‐to‐male ratios. Despite differences in the number of females and their social selectivity, the same pattern of female feedback emerged in seven of eight flocks: One female produced the majority of wing strokes to male song, making her the primary wing stroker in her flock. Previous studies on large flocks have demonstrated females to facilitate male song improvisation and development if they exhibited higher social selectivity by approaching immature males less. Here, we found that primary wing strokers were indeed more socially selective than non‐primary wing strokers. This research is the first to document social stimulation being facilitated at the group level to ensure that more highly selective females deliver the most feedback.  相似文献   
36.
The Southern Ocean archipelago, the South Orkney Islands (SOI), became the world's first entirely high seas marine protected area (MPA) in 2010. The SOI continental shelf (~44 000 km2), was less than half covered by grounded ice sheet during glaciations, is biologically rich and a key area of both sea surface warming and sea‐ice losses. Little was known of the carbon cycle there, but recent work showed it was a very important site of carbon immobilization (net annual carbon accumulation) by benthos, one of the few demonstrable negative feedbacks to climate change. Carbon immobilization by SOI bryozoans was higher, per species, unit area and ice‐free day, than anywhere‐else polar. Here, we investigate why carbon immobilization has been so high at SOI, and whether this is due to high density, longevity or high annual production in six study species of bryozoans (benthic suspension feeders). We compared benthic carbon immobilization across major regions around West Antarctica with sea‐ice and primary production, from remotely sensed and directly sampled sources. Lowest carbon immobilization was at the northernmost study regions (South Georgia) and southernmost Amundsen Sea. However, data standardized for age and density showed that only SOI was anomalous (high). High immobilization at SOI was due to very high annual production of bryozoans (rather than high densities or longevity), which were 2x, 3x and 5x higher than on the Bellingshausen, South Georgia and Amundsen shelves, respectively. We found that carbon immobilization correlated to the duration (but not peak or integrated biomass) of phytoplankton blooms, both in directly sampled, local scale data and across regions using remote‐sensed data. The long bloom at SOI seems to drive considerable carbon immobilization, but sea‐ice losses across West Antarctica mean that significant carbon sinks and negative feedbacks to climate change could also develop in the Bellingshausen and Amundsen seas.  相似文献   
37.
38.
Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar–ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source–sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.  相似文献   
39.
40.
Abiotic stress is a major force of selection that organisms are constantly facing. While the evolutionary effects of various stressors have been broadly studied, it is only more recently that the relevance of interactions between evolution and underlying ecological conditions, that is, eco-evolutionary feedbacks, have been highlighted. Here, we experimentally investigated how populations adapt to pH-stress under high population densities. Using the protist species Tetrahymena thermophila, we studied how four different genotypes evolved in response to stressfully low pH conditions and high population densities. We found that genotypes underwent evolutionary changes, some shifting up and others shifting down their intrinsic rates of increase (r0). Overall, evolution at low pH led to the convergence of r0 and intraspecific competitive ability (α) across the four genotypes. Given the strong correlation between r0 and α, we argue that this convergence was a consequence of selection for increased density-dependent fitness at low pH under the experienced high density conditions. Increased density-dependent fitness was either attained through increase in r0, or decrease of α, depending on the genetic background. In conclusion, we show that demography can influence the direction of evolution under abiotic stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号