首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   900篇
  免费   97篇
  国内免费   45篇
  2024年   2篇
  2023年   28篇
  2022年   20篇
  2021年   51篇
  2020年   42篇
  2019年   48篇
  2018年   35篇
  2017年   32篇
  2016年   31篇
  2015年   51篇
  2014年   37篇
  2013年   65篇
  2012年   43篇
  2011年   42篇
  2010年   35篇
  2009年   40篇
  2008年   49篇
  2007年   41篇
  2006年   44篇
  2005年   29篇
  2004年   27篇
  2003年   31篇
  2002年   29篇
  2001年   17篇
  2000年   16篇
  1999年   17篇
  1998年   9篇
  1997年   16篇
  1996年   18篇
  1995年   12篇
  1994年   7篇
  1993年   9篇
  1992年   10篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   9篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1042条查询结果,搜索用时 15 毫秒
101.
Wei KF  Chen J  Chen YF  Wu LJ  Jia WS 《遗传》2012,34(3):296-306
从逆境信号感知、ABA合成的触发到ABA水平的动态调控,是细胞内重要的逆境信号传导途径,相对于应答ABA的下游信号事件,该领域研究滞后。研究显示,根系中ZEP、限速酶NCED、AtRGS1等合成酶基因及ABA2基因响应胁迫反应上调ABA信号水平。而7′-,8′-,9′-hydroxylase和糖基转移酶基因受逆境诱导激活,负调节ABA的积累。同时,提高的内源ABA信号水平能激活合成酶基因和代谢酶基因的表达。此外,基因表达和源库动力学分析显示,叶片ABA动态库的维持依赖根源ABA的持续供应。值得一提的是,miRNA与ABA信号起源及动态水平维持有关。进一步的代谢动力学分析揭示,ABA信号水平受合成酶基因和代谢酶基因表达的协同控制,多因素共同参与内源ABA信号水平的动态调控。  相似文献   
102.
Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a ‘press’, for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances.  相似文献   
103.
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium.  相似文献   
104.
Arguably, one of the foremost distinctions between life and non-living matter is the ability to sense environmental changes and respond appropriately—an ability that is invested in every living cell. Within a single cell, this function is largely carried out by networks of signaling molecules. However, the details of how signaling networks help cells make complicated decisions are still not clear. For instance, how do cells read graded, analog stress signals but convert them into digital live-or-die responses? The answer to such questions may originate from the fact that signaling molecules are not static but dynamic entities, changing in numbers and activity over time and space. In the past two decades, researchers have been able to experimentally monitor signaling dynamics and use mathematical techniques to quantify and abstract general principles of how cells process information. In this review, the authors first introduce and discuss various experimental and computational methodologies that have been used to study signaling dynamics. The authors then discuss the different types of temporal dynamics such as oscillations and bistability that can be exhibited by signaling systems and highlight studies that have investigated such dynamics in physiological settings. Finally, the authors illustrate the role of spatial compartmentalization in regulating cellular responses with examples of second-messenger signaling in cardiac myocytes.  相似文献   
105.
Within animal groups, individuals can learn of a predator's approach by attending to the behaviour of others. This use of social information increases an individual's perceptual range, but can also lead to the propagation of false alarms. Error copying is especially likely in species that signal collectively, because the coordination required for collective displays relies heavily on social information. Recent evidence suggests that collective behaviour in animals is, in part, regulated by negative feedback. Negative feedback may reduce false alarms by collectively signalling animals, but this possibility has not yet been tested. We tested the hypothesis that negative feedback increases the accuracy of collective signalling by reducing the production of false alarms. In the treehopper Umbonia crassicornis, clustered offspring produce collective signals during predator attacks, advertising the predator's location to the defending mother. Mothers signal after evicting the predator, and we show that this maternal communication reduces false alarms by offspring. We suggest that maternal signals elevate offspring signalling thresholds. This is, to our knowledge, the first study to show that negative feedback can reduce false alarms by collectively behaving groups.  相似文献   
106.
Animals rarely solve problems spontaneously. Some bird species, however, can immediately find a solution to the string-pulling problem. They are able to rapidly gain access to food hung on the end of a long string by repeatedly pulling and then stepping on the string. It is currently unclear whether these spontaneous solutions are produced by insight or by a perceptual-motor feedback loop. Here, we presented New Caledonian crows and humans with a novel horizontal string-pulling task. While the humans succeeded, no individual crow showed a significant preference for the connected string, and all but one failed to gain the food even once. These results clearly show that string pulling in New Caledonian crows is generated not by insight, but by perceptual feedback. Animals can spontaneously solve problems without planning their actions.  相似文献   
107.
108.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of the catecholamines dopamine, noradrenaline and adrenaline, is regulated acutely by feedback inhibition by the catecholamines and relief of this inhibition by phosphorylation of serine 40 (Ser40). Phosphorylation of serine 40 abolishes the binding of dopamine to a high affinity ( K D < 4 nM) site on TH, thereby increasing the activity of the enzyme. We have found that TH also contains a second low affinity ( K D = 90 nM) dopamine-binding site, which is present in both the non-phosphorylated and the Ser40-phosphorylated forms of the enzyme. Binding of dopamine to the high-affinity site decreases V max and increases the K m for the cofactor tetrahydrobiopterin, while binding of dopamine to the low-affinity site regulates TH activity by increasing the K m for tetrahydrobiopterin. Kinetic analysis indicates that both sites are present in each of the four human TH isoforms. Dissociation of dopamine from the low-affinity site increases TH activity 12-fold for the non-phosphorylated enzyme and 9-fold for the Ser40-phosphorylated enzyme. The low-affinity dopamine-binding site has the potential to be the primary mechanism responsible for the regulation of catecholamine synthesis under most conditions.  相似文献   
109.
110.
Cardiac mechano-electric feedback and electrical restitution in humans   总被引:3,自引:3,他引:0  
Electrical restitution in the heart is the property whereby the action potential duration and conduction velocity of a beat of altered cycle length vary according to its immediacy to the preceding basic beat--the coupling interval, usually the diastolic interval. In general, action potential duration (APD) increases with increasing coupling interval, and the relation between action potential duration and the preceding diastolic interval describes the APD restitution curve. The latter has recently been the focus of considerable interest since the steepness of the initial part of the restitution curve plays an important role in electrical stability and arrhythmogenesis. Mechanical stretch has been shown to alter APD and hence refractoriness either through stretch activated channels or by influencing calcium cycling. Such an effect on refractoriness has been proposed as a mechanism of arrhythmogenesis particularly if spatially inhomogeneities manifest within the heart. Here, we review (1) the spatial and temporal characteristics of APD restitution in humans; (2) previously reported work showing that mechanical loading differentially effects APD of interpolated beats of altered cycle length, and hence alters the slope of the APD restitution curve; and (3) evidence that inhomogeneity of APD restitution slope may be an important factor in arrhythmogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号