首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16632篇
  免费   613篇
  国内免费   426篇
  2023年   118篇
  2022年   255篇
  2021年   273篇
  2020年   304篇
  2019年   523篇
  2018年   519篇
  2017年   246篇
  2016年   323篇
  2015年   458篇
  2014年   909篇
  2013年   1113篇
  2012年   594篇
  2011年   1032篇
  2010年   710篇
  2009年   840篇
  2008年   855篇
  2007年   940篇
  2006年   878篇
  2005年   805篇
  2004年   671篇
  2003年   643篇
  2002年   551篇
  2001年   405篇
  2000年   346篇
  1999年   364篇
  1998年   394篇
  1997年   306篇
  1996年   272篇
  1995年   277篇
  1994年   230篇
  1993年   175篇
  1992年   163篇
  1991年   133篇
  1990年   106篇
  1989年   104篇
  1988年   92篇
  1987年   80篇
  1986年   45篇
  1985年   92篇
  1984年   124篇
  1983年   92篇
  1982年   81篇
  1981年   50篇
  1980年   41篇
  1979年   34篇
  1978年   17篇
  1977年   17篇
  1976年   13篇
  1974年   17篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 875 毫秒
991.
We previously showed that an overproduction of nitric oxide (NO) by macrophages was responsible for the collapse of lymphoproliferative responses after burn injury in rats. First, we demonstrate here that 10 days post-burn, the inhibition of splenocyte response to concanavalin-A results from cytostatic, apoptotic, and necrotic effects of NO on activated T cells. This was evidenced by various criteria at the levels of DNA, mitochondria, and plasma membrane. Inhibition of NO synthase by S-methylisothiourea (10 microM) normalized all the parameters. Second, we show that two soluble guanylate cyclase (sGC) inhibitors, LY83583 and ODQ, restored the proliferative response in a concentration-dependent manner. LY83583 (0.5 microM) rescued T cells from apoptosis. Similar results were obtained with KT5823 (5 microM) a specific inhibitor of protein kinase G (PKG). In contrast, neither LY83583 nor KT5823 inhibited NO-induced necrosis. These results suggest that NO blocked T cells in the G1 phase and induced apoptosis through a sGC-PKG-dependent pathway and necrosis through an independent one.  相似文献   
992.
The formation of laminae within the retina requires the coordinate regulation of cell differentiation and migration. The cell adhesion molecule and member of the immunoglobulin superfamily, receptor protein tyrosine phosphatase Mu, PTPmu, is expressed in precursor and early, differentiated cells of the prelaminated retina, and later becomes restricted to the inner plexiform, ganglion cell, and optic fiber layers. Since the timing of PTPmu expression correlates with the peak period of retinal lamination, we examined whether this RPTP could be regulating cell adhesion and migration within the retina, and thus influencing retinal development. Chick retinal organ cultures were infected with herpes simplex viruses encoding either an antisense sequence to PTPmu, wild-type PTPmu, or a catalytically inactive mutant form of PTPmu, and homophilic adhesion was blocked by using a function-blocking antibody. All conditions that perturbed PTPmu dramatically disrupted retinal histogenesis. Our findings demonstrate that catalytic activity and adhesion mediated by PTPmu regulate lamination of the retina, emphasizing the importance of adhesion and signaling via receptor protein tyrosine phosphatases in the developing nervous system. To our knowledge, this is the first demonstration that an Ig superfamily RPTP regulates the lamination of any neural tissue.  相似文献   
993.
As fibroblasts near senescence, their responsiveness to external signals diminishes. This well-documented phenomenon likely underlies physiological deterioration and limited tissue regeneration in aging individuals. Understanding the underlying molecular mechanisms would provide opportunities to ameliorate these situations. A key stimulus for human dermal fibroblasts are ligands for the epidermal growth factor receptor (EGFR). We have shown earlier that EGFR expression decreases by about half in near senescent fibroblasts (Shiraha et al., 2000, J. Biol. Chem. 275 (25), 19343-19351). However, as the cell responses are nearly absent near senescence, other aging-related signal attenuation changes must also occur. Herein, we show that EGFR signaling as determined by receptor autophosphorylation is diminished over 80%, with a corresponding decrease in the phosphorylation of the immediate postreceptor adaptor Shc. Interestingly, we found that this was due at least in part to increased dephosphorylation of EGFR. The global cell phosphotyrosine phosphatase activity increased some threefold in near senescent cells. An initial survey of EGFR-associated protein tyrosine phosphatases (PTPases) showed that SHP-1 (PTPIC, HCP, SHPTP-1) and PTPIB levels are increased in parallel in these cells. Concomitantly, we also discovered an increase in expression of receptor protein tyrosine phosphatase alpha (RPTPalpha). Last, inhibition of protein tyrosine phosphatases by sodium orthovanadate in near senescent cells resulted in increased EGFR phosphorylation. These data support a model in which, near senescence, dermal fibroblasts become resistant to EGFR-mediated stimuli by a combination of receptor downregulation and increased signal attenuation.  相似文献   
994.
Cellular senescence is characterized by impaired cell proliferation. We have previously shown that, relative to the young counterpart, senescent WI-38 human fibroblasts display a decreased abundance of active phosphorylated ERK (p-ERK) in the nucleus. We have tested the hypothesis that this is due to elevated levels of nuclear MAP kinase phosphatase (MKP) activity in senescent cells. Our results indicate that the activity and abundance of MKP-2 is increased in senescent fibroblasts, compared to their young counterparts. Further analysis indicates that it is MKP-2 protein, but not MKP-2 mRNA level, that is increased in senescent cells. This increase is the result of the increased stability of MKP-2 protein against proteolytic degradation. The degradation of MKPs was impaired by proteasome inhibitors both in young and old WI-38 cells, indicating that proteasome activity is involved in the degradation of MKPs. Finally, our results indicate that proteasome activity, in general, is diminished in senescent fibroblasts. Taken together, these data indicate that the increased level and activity of MKP-2 in senescent WI-38 cells are the consequence of impaired proteosomal degradation, and this increase is likely to play a significant role in the decreased levels of p-ERK in the nucleus of senescent cells.  相似文献   
995.
The serine protease urokinase-type plasminogen activator (uPA) promotes matrix degradation by many cell types, including the invasive extravillous trophoblast (EVT) of the human placenta. The noncatalytic amino-terminal end of uPA binds to uPA receptors (uPARs) expressed by these cells. A highly polarized expression of uPAR-bound uPA at the migration front of EVT cells in situ suggests a functional role of uPA:uPAR interaction in EVT cell migration. The present study examined whether uPA stimulates EVT cell migration, independent of proteolytic function, and investigated some of the signaling pathways involved. Using in vitro-propagated EVT cells in Transwell migration assays, both uPA and its noncatalytic amino-terminal fragment (ATF) were shown to stimulate migration through multiporous polycarbonate (pore size 8 microm) membranes. A uPAR-blocking antibody inhibited basal and ATF-stimulated migration. Migration was found to be stimulated by hypoxic conditions, which upregulates uPAR expression; this stimulation was abrogated with the uPAR-blocking antibody, indicating the role of endogenous uPA in EVT cell migration. Spectrofluorometric measurement of cytosolic calcium in cells treated with uPA and ATF demonstrated a rapid rise in [Ca2+](i), which was prevented by pretreatment of cells with thapsigargin, indicating a release from intracellular stores. Both basal and ATF-mediated migratory responses were suppressed in the presence of selective pharmacological inhibitors LY294002, U73122, and U0126, implicating the respective roles of phosphatidinylinositol 3-kinase (PI 3-K), phospholipase C (PLC), and MEK1/2 in basal and ATF-stimulated migratory capacity. Taken together, these results demonstrate that uPA:uPAR interaction stimulates EVT cell migration, independent of uPA enzymatic activity, using the mitogen-activated protein kinase pathway and calcium signaling events including the participation of PI 3-K and PLC. These findings are relevant to clinical conditions of aberrant trophoblast migration, including spontaneous abortion, preeclampsia, and choriocarcinoma.  相似文献   
996.
Neuregulins: functions,forms, and signaling strategies   总被引:35,自引:0,他引:35  
The neuregulins (NRGs) are cell-cell signaling proteins that are ligands for receptor tyrosine kinases of the ErbB family. The neuregulin family of genes has four members: NRG1, NRG2, NRG3, and NRG4. Relatively little is known about the biological functions of the NRG2, 3, and 4 proteins, and they are considered in this review only briefly. The NRG1 proteins play essential roles in the nervous system, heart, and breast. There is also evidence for involvement of NRG signaling in the development and function of several other organ systems, and in human disease, including the pathogenesis of schizophrenia and breast cancer. There are many NRG1 isoforms, raising the question "Why so many neuregulins?" Study of mice with targeted mutations ("knockout mice") has demonstrated that isoforms differing in their N-terminal region or in their epidermal growth factor (EGF)-like domain differ in their in vivo functions. These differences in function might arise because of differences in expression pattern or might reflect differences in intrinsic biological characteristics. While differences in expression pattern certainly contribute to the observed differences in in vivo functions, there are also marked differences in intrinsic characteristics that may tailor isoforms for specific signaling requirements, a theme that will be emphasized in this review.  相似文献   
997.
Nck-interacting kinase (NIK)-related kinase (NRK)/NIK-like embryo-specific kinase (NESK) is a protein kinase that belongs to the germinal center kinase family, and activates the c-Jun N-terminal kinase (JNK) signaling pathway. In this study, we examined the effect of NRK/NESK on actin cytoskeletal organization. Overexpression of NRK/NESK in COS7 cells induced accumulation of polymerized actin at the perinuclear. Phosphorylation of cofilin, an actin-depolymerizing factor, was increased in NRK/NESK-expressing HEK 293T cells. In addition, in vitro phosphorylation of cofilin was observed on NRK/NESK immunoprecipitates from HEK 293T cells expressing the kinase domain of NRK/NESK. The cofilin phosphorylation occurred at the serine residue of position 3 (Ser-3). Since the phosphorylation at Ser-3 inactivates the actin-depolymerizing activity of cofilin, these results suggest that NRK/NESK induces actin polymerization through cofilin phosphorylation. The cofilin phosphorylation did not appear to be mediated through activation of LIM-kinasel, a cofilin-phosphorylating kinase, or through the activation of JNK. Thus, cofilin is likely to be a direct substrate of NRK/NESK. NRK/NESK is predominantly expressed in skeletal muscle during the late stages of mouse embryogenesis. Thus, NRK/NESK may be involved in the regulation of actin cytoskeletal organization in skeletal muscle cells through cofilin phosphorylation.  相似文献   
998.
999.
Previous studies suggest that localization of tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family members is important for regulating their signal transduction. During a screen for TRAF3-associated proteins that potentially alter TRAF3 subcellular localization and enable signal transduction, we identified a novel protein, T3JAM (TRAF3-interacting Jun N-terminal kinase (JNK)-activating modulator). This protein associates specifically with TRAF3 but not other TRAF family members. Coexpression of T3JAM with TRAF3 recruits TRAF3 to the detergent-insoluble fraction. More importantly, T3JAM and TRAF3 synergistically activate JNK but not nuclear factor (NF)-kappaB. Our studies indicate that T3JAM may function as an adapter molecule that specifically regulates TRAF3-mediated JNK activation.  相似文献   
1000.
Kim HM  Shin DR  Yoo OJ  Lee H  Lee JO 《FEBS letters》2003,540(1-3):65-70
This study provides evidence that treatment with preclustered ephrin A5-Fc results in a substantial increase in the stability of the p110γ PI-3 kinase associated with EphA8, thereby enhancing PI-3 kinase activity and cell migration on a fibronectin substrate. In contrast, co-expression of a lipid kinase-inactive p110γ mutant together with EphA8 inhibits ligand-stimulated PI-3 kinase activity and cell migration on a fibronectin substrate, suggesting that the mutant has a dominant negative effect against the endogenous p110γ PI-3 kinase. Significantly, the tyrosine kinase activity of EphA8 is not important for either of these processes. Taken together, our results demonstrate that the stimulation of cell migration on a fibronectin substrate by the EphA8 receptor depends on the p110γ PI-3 kinase but is independent of a tyrosine kinase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号